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Abstract  

Background 

Studies of several tumour types have shown that expression profiling of 

cellular protein extracted from surgical tissue specimens by direct mass 

spectrometry analysis can accurately discriminate tumour from normal tissue 

and in some cases can sub-classify disease. We have evaluated the potential 

value of this approach to classify various clinico-pathological features in 

colorectal cancer by employing matrix-assisted laser desorption ionisation 

time of-flight-mass spectrometry (MALDI-TOF MS). 

Methods 

Protein extracts from 31 tumour and 33 normal mucosa specimens were 

purified, subjected to MALDI-Tof MS and then analysed using the 

‘GenePattern’ suite of computational tools (Broad Institute, MIT, USA). 

Comparative Gene Marker Selection with either a t-test or a signal-to-noise 

ratio (SNR) test statistic was used to identify and rank differentially expressed 

marker peaks. The k-nearest neighbours algorithm was used to build 

classification models either using separate training and test datasets or else 

by using an iterative, ‘leave-one-out’ cross-validation method. 

Results 

73 protein peaks in the mass range 1800-16000Da were differentially 

expressed in tumour verses adjacent normal mucosa tissue (P ≤0.01, false 

discovery rate ≤0.05). Unsupervised hierarchical cluster analysis classified 

most tumour and normal mucosa into distinct cluster groups. Supervised 

prediction correctly classified the tumour/normal mucosa status of specimens 

in an independent test spectra dataset with 100% sensitivity and specificity 
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(95% confidence interval: 67.9-99.2%). Supervised prediction using ‘leave-

one-out’ cross validation algorithms for tumour spectra correctly classified 

10/13 poorly differentiated and 16/18 well/moderately differentiated tumours 

(P = <0.001; receiver-operator characteristics - ROC - error, 0.171); disease 

recurrence was correctly predicted in 5/6 cases and disease-free survival 

(median follow-up time, 25 months) was correctly predicted in 22/23 cases (P 

= <0.001; ROC error, 0.105). A similar analysis of normal mucosa spectra 

correctly predicted 11/14 patients with, and 15/19 patients without lymph node 

involvement (P = 0.001; ROC error, 0.212). 

Conclusions 

Protein expression profiling of surgically resected CRC tissue extracts by 

MALDI-TOF MS has potential value in studies aimed at improved molecular 

classification of this disease. Further studies, with longer follow-up times and 

larger patient cohorts, that would permit independent validation of supervised 

classification models, would be required to confirm the predictive value of 

tumour spectra for disease recurrence/patient survival.  
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Background  
Colorectal cancer (CRC) is the second commonest malignancy and has a 

five-year survival rate of approximately 50% [1, 2]. The majority of patients, 

particularly with early stage disease (Dukes’ A, Stage I), are treated with 

surgery [3]. For more advanced disease (Dukes’ C and D, Stage III or IV) 

surgery combined with adjuvant chemotherapy has proven survival benefits 

[4-6]. However, the disease outcome is very variable and prognosis and 

prediction of treatment response based on conventional disease staging 

criteria is not reliable [6, 7]. There has therefore been considerable interest in 

the development of more robust prognostic and predictive disease markers for 

patient stratification with the ultimate aim of tailoring treatment to the 

individual patient [8, 9]. 

 

Markers based on circulating carcinoembryonic antigen (CEA) levels and 

various tumour-associated gene mutations including microsatellite instability 

(MSI), loss of heterozygosity of 18q, deleted in colorectal cancer (DCC), 

mutations in KRAS, BRAF and PIK3CA genes have all been shown to be of 

some prognostic or predictive value (reviewed in [8, 10]).  In particular, the 

mutational status of KRAS, BRAF and PIK3CA genes has recently been 

proposed as a reliable marker for predicting responders to new targeted 

agents for the epidermal growth factor receptor (EGFR) [11, 12]. In addition, 

gene expression profiling studies of both mRNA [13] and microRNA [14] have 

revealed tumour-associated gene expression signatures that form the basis 

for a molecular classification of disease sub-types that define disease course 

and treatment response (reviewed in [8]). These studies on gene mutations 

and RNA expression have been paralleled by analysis of the tumour cell 
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proteome, most commonly employing the technique of two-dimensional 

difference gel electrophoresis (2D-DIGE) to identify proteins that are 

differentially expressed in tumour verses normal mucosa tissue (reviewed in 

[15]). An expanding list of candidate prognostic markers have emerged from 

these studies including for example, cathepsin D, S100A4 and APAF-1 [15].  

 

As an alternative to 2D-DIGE, studies of other tumour types have also 

employed the technique of direct protein expression profiling of tumour/normal 

tissue by surface enhanced laser desorption ionisation time-of-flight mass 

spectrometry (SELDI-TOF) or by matrix-assisted laser desorption ionisation 

time of-flight-mass spectrometry (MALDI-TOF) mass spectrometry [16, 17]. 

This approach, which is most commonly associated with the development of 

serum-based diagnostic markers, offers a number of advantages over 2D-

DIGE. Although the technique yields no information on the actual identities of 

proteins, the reproducible spectral profiles that are relatively simple to 

generate in high throughput studies allow robust classification models of 

different proteome populations to be built. For example, studies of lung [18], 

breast [19], head and neck cancer [20] have all shown that the spectral 

profiles of tumour and normal tissue can be accurately discriminated and in 

some cases sub-classified by direct protein profiling using SELDI/MALDI-TOF 

mass spectrometry. Only one previous study has reported on the detection of 

differences between normal mucosa, adenoma and colorectal carcinoma by 

using SELDI-TOF MS [21]. 
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In the present study, we have evaluated the potential value of protein 

expression profiling of CRC tissue by MALDI-TOF mass spectrometry. In 

addition to comparing tumour with adjacent normal mucosa, we have 

investigated whether spectral profiles of tumour tissue can be used to classify 

various clinico-pathological features of disease. Since previous 2D-DIGE 

studies have reported abnormalities of protein expression profiles in tumour-

adjacent normal tissue [22], we have also extended this analysis to normal 

mucosa tissue. 

Methods 
Clinical specimens 

Tissue samples were collected from a total of 36 patients with confirmed CRC 

at the time of surgical resection at Colchester General Hospital, Essex UK. All 

specimens were obtained following informed consent in accordance with local 

UK NHS Ethics Committee approval (protocol reference: MH 528). Surgically 

excised specimens were washed extensively in ice-cold 150mM NaCl and 

samples of normal colonic mucosa (>10cm from tumour margin) and tumour 

tissues were excised using a scalpel and then snap frozen and transferred to 

a – 80°C freezer. The total time from surgical resection to snap freezing of 

specimens was <30 mins. 

 

Protein extraction and purification 

Frozen tissue samples (approximately 250 mg) were ground using a mortar 

and pestle and then lysed for 30 mins at 4°C in 1.0 ml of 10mM Tris-HCl pH 

7.5, 200mM NaCl containing Protease inhibitor cocktail (Roche 

Pharmaceuticals) and 1% N-octyl-β-D-glucopyranoside (Sigma Aldrich). The 
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cell lysate was then centrifuged at 12,000 x g for 30 mins and the supernatant 

representing the solubilised fraction was removed. Protein was further purified 

by reversed phase hydrophobic interaction chromatography using a 

commercially available super-paramagnetic microparticle kit (MB-HIC-C8, 

Bruker Daltonics). Briefly, 10 µl of 30-35 mg/ml protein solution was adsorbed 

to 10 µl of beads after addition of 20 µl kit binding buffer. After three washes 

with 200 µl 0.1% trifluoroacetic acid, protein was eluted in 20µl of 50% (v/v) 

acetonitrile (Fisher Scientific)  Eluted protein was stored at 4°C for no more 

than 1 hr prior to matrix co-crystallisation. 

 

MALDI-TOF mass spectrometry 

To facilitate reproducible co-crystallisation of protein with matrix solution, a 

modification of the slow crystallisation method [23] was used. Briefly, 20 ul of 

purified protein was mixed with 20 µl of acetonitrile containing 0.1% 

trifluoroacetic acid, saturated with sinapic acid (Sigma Aldrich). A 20 µl 

aqueous solution containing diammonium citrate (200 mM) and nitrotetracetic 

acid (0.1%) was added and crystal formation was allowed to proceed for 2-3 

hrs. Crystallised matrix-protein samples were spotted onto a stainless steel 

MALDI target plate and spectra were acquired using a MALDI-TOF mass 

spectrometer (Reflex IV; Bruker Daltonics) with the following instrument 

settings: ion source 1, 20 kV; ion source 2, 16.65 kV; lens voltage, 9.5 kV; 

pulsed ion extraction, 200 ns. Ionisation was achieved by irradiation with a 

nitrogen laser (e = 337 nm) operating at 25 Hz and 20% laser power. For 

matrix suppression, we used a high gating factor with signal suppression up to 

1500 Da. Mass spectra were detected in linear positive mode. Detector gain 
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was set at 1600 V, sample rate at 1.0 and electronic gain at 100 mV with real-

time smoothing. Spectra were acquired in duplicate from 500 laser shots 

delivered as 5 x 100 pulses and were internally calibrated using ‘FlexAnalysis’ 

spectral processing software (Version 2.0; Bruker Daltonics) with reference 

marker peaks at 2426.9Da, 6109.5 Da and 12471.6 Da. External calibration 

used the following reference standards: bombesin (1620.86 Da), somatostatin 

(3149.57 Da), insulin (5734.51 Da), ubiquitin I (8565.76 Da), cytochrome c 

(12,360.97 Da) and myoglobin (16,952.30 Da). 

 

Spectral processing and analysis 

Calibrated spectra were exported as ASCII files and were digitally processed 

by smoothing, de-noising, baseline subtraction and normalisation (by total ion 

current) using the ‘SpecAlign’ suite of spectral computational tools [24, 25]. 

Validation of the reproducibility of the resulting mass spectrometry profiles 

and elimination of ‘outliers’ was accomplished as described elsewhere [26].  

Duplicate spectra with a cross-correlation function of <0.950 were discarded. 

From the initial cohort of specimens, representing matched tumour and 

adjacent normal mucosa from 36 patients, a total of 64 spectra representing 

31 tumours and 33 normal mucosa were obtained (see Table 1). Of the 5 

tumour and 3 mucosa specimens that were excluded from analysis, 2 tumour 

and one mucosa failed to yield reproducible spectra on repeated protein 

preparations. The remaining 3 tumour and 2 mucosa specimens consistently 

gave spectra of poor quality (outliers), presumably as a result of specimen 

deterioration. Matching peaks were aligned across spectra by using the 
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combined Fast Fourier Transform/Peak matching method [25] and modelled 

peak areas for the entire set of spectra were exported as a single csv file. 

 

Subsequent spectral analysis was implemented in the ‘GenePattern’ suite of 

software tools (Broad Institute, MIT, USA) [27]. Hierarchical clustering used 

Euclidean correlation as the column distance measure with pair-wise average 

linkage as the clustering method. Comparative Gene Marker Selection [28, 

29] with either a t-test or a signal-to-noise ratio (SNR) test statistic was used 

to identify and rank differentially expressed marker peaks and to assign 

Bonferroni-corrected P and false discovery rate (FDR) values [28-30]. The k-

nearest neighbours (kNN) algorithm [29] was used to build a classification 

model for tumour vs normal using separate training and test datasets. For this 

purpose, two thirds of the spectra, comprised of a representative proportion of 

tumour and normal spectra, were randomly assigned to a training dataset, 

with the remaining third being used as an independent test dataset. Spectra 

were randomly assigned using the GenePattern ‘SplitDatasetTrainTest’ 

module [27].  Alternatively the kNN algorithm was used in an iterative, ‘leave-

one-out’ cross-validation mode. Other statistical analysis used the SPSS 

software. 

Results  
Spectral profiles in tumour and normal mucosa tissues 

Table 1 summarises the clinico-pathological data for the 36 CRC patients 

from whom specimens were obtained. In most cases, spectra of adequate 

quality from matching pairs of tumour and adjacent normal mucosa were 

obtained. However, some tissue protein preparations consistently yielded 
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spectra of poor quality or that were poorly reproducible (see Methods section); 

these were excluded from the analysis. The resulting 64 spectra, representing 

31 tumour and 33 normal mucosa specimens, generated a total of 265 protein 

peaks in the mass range 1800-16000Da. Illustrative examples of raw MALDI-

TOF spectral profiles are shown in additional file 1. Although the overall 

intensity profile of individual protein peaks was very heterogeneous across 

different specimens, unsupervised hierarchical cluster analysis classified most 

tumour and normal mucosa into distinct cluster groups (Figure 1) consistent 

with major differences in the tumour verses normal protein expression 

profiles. 

 

To quantitatively evaluate the differences between the protein expression 

profiles of tumour verses normal tissue, the Comparative Gene Marker 

Selection algorithm [28] was applied to the spectral data-set to determine the 

level of significance of difference between tumour and normal for each protein 

peak. Figure 2 shows the frequency distribution (occurrences) of protein peak 

P values (Feature P) that were binned in increments of 0.05. Above P = 0.05, 

the representation of protein peaks was fairly evenly distributed. However, 

nearly 100 peaks gave a P value <0.05, indicating that a sizable fraction of 

proteins detected by MALDI-TOF mass spectrometry discriminate between 

tumour and normal colonic tissue. Applying a threshold of P ≤0.01, FDR 

≤0.05, the expression profile of a total of 73 protein peaks was significantly 

different between tumour and normal tissue with 57 being up-regulated in 

normal tissue and 16 being up-regulated in tumour tissue. Figure 3 shows a 
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heat-map profile of these ‘marker peaks’ and additional file 2 summarises 

their statistical features. 

 

To rigorously demonstrate that tumour and normal mucosa tissue could be 

distinguished using their protein spectral profiles, the 64 spectra were 

randomly split into separate training and test datasets. The training spectra 

dataset was used to optimise a kNN algorithm [29] for predicting tumour or 

normal status. As summarised in additional file 3, the model correctly 

predicted the status of specimens in the independent test spectra dataset with 

100% sensitivity and specificity (95% confidence interval: 67.9-99.2%).  

 

Classification of clinico-pathological characteristics from tumour 

spectra 

To determine whether the protein expression profiles of tumour tissue could 

be used to predict individual clinico-pathological characteristics of patients 

(Table 1), the kNN algorithm was used to optimise a series of classification 

models. Since the limited numbers of datasets precluded analysis by using 

independent train and test spectra, the kNN algorithm was used in an 

iterative, ‘leave-one-out’ cross-validation mode. Table 2 summarises the 

results of this analysis. The predictive model for distinguishing poorly 

differentiated from well/moderately differentiated tumours gave a receiver-

operator characteristics (ROC) error of 0.171, correctly classifying 10/13 

poorly differentiated and 16/18 well/moderately differentiated tumours (P = 

<0.001). Additional file 4 summarises the kNN algorithm results and Figure 4A 

shows the expression profiles of the top two ranked discriminating peaks. The 
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kNN model for disease recurrence also gave a low ROC error (0.105 – see 

Table 2A). As summarised in additional file 5, the model correctly predicted 

5/6 patients with recurrent disease and 22/23 who are disease-free (P = 

<0.001). Figure 4A shows the expression profiles of the top two ranked 

marker peaks for classifying disease outcome. 

 

Classification of clinico-pathological characteristics from normal 

mucosa spectra 

In a similar analysis of normal mucosa spectra (Table 3), only the 

characteristic of lymph node involvement gave a low ROC error (0.212). As 

shown in Table 3 and in additional file 6, the kNN algorithm correctly predicted 

11/14 patients with, and 15/19 patients without lymph node involvement (P = 

0.001). Figure 4B shows the expression profiles of the top two ranked marker 

peaks for classifying the characteristic of lymph node involvement. 

Discussion  
Although previous studies employing 2D-DIGE analysis of CRC tissues have 

documented a number of proteins that are either up- or down-regulated in 

tumour verses normal mucosa [15], the extent to which protein expression 

profile differences can be detected by direct MALDI-TOF analysis in CRC was 

not previously known. Analysis of complex protein mixtures by MALDI-TOF 

MS is inherently limited by the resolution afforded by this type of instrument. 

Also, only a minor fraction of protein species are efficiently ionisable and 

therefore detectable. However, our results show that, in common with similar 

studies in some other solid tumour types [18-20], MALDI-TOF MS readily 

detects a sizable fraction of protein marker peaks whose expression level is 
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significantly different between tumour and normal mucosa. By using an 

optimised kNN training model, the classification of tumour and normal tissue 

was correctly predicted with 100% sensitivity and specificity (95% confidence 

interval: 0.679-0.992) in an independent test dataset. This performance 

compares favourably with other studies, for example in head and neck 

squamous cell carcinoma, in which supervised prediction using SELDI-TOF 

spectral data correctly classified healthy mucosa and tumour tissue with an 

accuracy of 94.5% and 92.9% respectively [20]. 

 

In further evaluating the potential value of spectra generated from tumour 

tissue for classifying various clinic-pathological characteristics of disease, we 

observed low ROC errors with the kNN predictive models for differentiation 

(0.171) and disease recurrence (0.105). Since histological differentiation 

stage is a characteristic that is intrinsic to the tumour tissue (and would most 

closely reflect the actual tumour cell proteome), the ability of the spectra to 

discriminate well/moderately differentiated from poorly differentiated 

histologies is perhaps unsurprising. The good performance of the predictive 

model for disease recurrence is consistent with data from several microarray 

expression profiling studies that have clearly demonstrated associations 

between patterns of tumour-associated gene expression and 

prognosis/treatment response [8, 13, 14]. However, given that in our study, 

only six patients had succumbed to recurrent disease at the time of data 

analysis (median follow-up time for recurrent disease patients: 33 months; 

median follow-up time for disease-free patient: 27 months), our results should 

be interpreted with caution. It is also important to emphasise that because of 
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the relatively small number of tumour specimens, rigorous validation of 

correlations with disease recurrence and histological differentiation stage in 

an independent ‘test’ datsaset was not possible in our study.  

 

Several lines of evidence indicate that the normal mucosa from surgically 

resected CRC tumour specimens display abnormalities in gene and protein 

expression. These abnormalities have been attributed to precancerous ‘field 

effect’ changes in tumour-adjacent mucosa and have been reported to affect 

protein expression [22], CpG island gene methylation [31] and gene 

microarray expression profiles [32]. Indeed one study has reported that gene 

expression profiling of non-neoplastic mucosa may predict clinical outcome of 

CRC patients [32]. These findings are reminiscent of reports from studies of 

other solid tumour types, most strikingly in hepatocellular carcimoma in which 

gene expression patterns of non-neoplastic liver tissue were predictive of 

patient survival, whereas tumour tissue gene expression signatures were of 

no prognostic value [33]. It was therefore of interest in our study to determine 

whether the protein expression profiles of normal mucosa could be used to 

classify any clinico-patholgical characteristics. Although we found no evidence 

for predictive value for disease relapse (ROC error, 0.519), the kNN model of 

normal mucosa spectra for lymph node involvement did give a low ROC error 

(0.212); the corresponding kNN model for tumour spectra did not show 

predictive value (0.391). One plausible scenario to explain the predictive value 

of normal mucosa spectra for lymph node involvement is that 

paracrine/inflammatory mechanisms, involving proximal affected lymph 
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nodes, may induce changes to the microenvironment of tumour-adjacent 

mucosa. 

 

As an essential pre-requisite for marker validation, it would be highly desirable 

in future studies to determine the identities of candidate marker peaks in 

tumour tissue that discriminate different histological differentiation stages and 

predict disease recurrence. Our findings also indicate that similar studies 

using the alternative approach of liquid chromatography coupled to tandem 

mass spectrometry (LC-MS/MS) in CRC are warranted.  

Conclusions  
In summary, our study has shown that direct protein expression profiling of 

surgically resected CRC tissue by MALDI-TOF mass spectrometry has 

potential value in studies aimed at improved molecular classification of this 

disease. Further studies, with longer follow-up times and larger patient 

cohorts, that would permit independent validation of predictive models, would 

be required to confirm the predictive value of tumour spectra for disease 

recurrence/patient survival.  
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Figures 
Figure 1. Unsupervised hierarchical cluster analysis of tumour and 

normal mucosa spectra. The dendrogram and heatmap show the clustering 

of Tumour (T) and normal mucosa (NM) spectra using Euclidean correlation 

as the column distance measure with pair-wise average linkage as the 

clustering method. Row clustering (not shown) used Spearman’s rank 

correlation as distance measure with pair-wise complete linkage as the 

clustering method. Specimens are colour-coded as green (NM) and red (T).  

 

Figure 2. Probability distribution of marker peaks distinguishing tumour 

from normal mucosa. Spectra from all 64 tumour and normal tissue samples 
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were analysed by Comparative Gene Marker Selection [28] using the SNR 

test statistic to identify peaks (features) that discriminate tumour from normal 

tissue. The feature P histogram shows the number of peaks (occurrences) 

that fall within binned P values. 

 

Figure 3. Heat map profile of marker peaks discriminating tumour from 

normal mucosa. The expression profiles and m/z values of the top 73 ranked 

peaks identified by Comparative Gene Marker Selection [28] (P = ≤ 0.01, FDR 

= ≤ 0.05) are depicted for all 64 tissue specimens. 

 

Figure 4. Relative ion intensity profiles of marker peaks used in 

predictive algorithms of tumour/mucosa clinico-pathological features. 

The peak intensity profiles of the top two-ranked scoring peaks are shown for 

tumour spectra (A) for classifying differentiation and disease recurrence and 

for normal mucosa spectra (B) for classifying lymph node involvement (see 

Table 2). The performance of predictive models for these clinico-pathological 

features are shown in additional file 4 (differentiation), in additional file 5 

(disease recurrence) and in additional file 6 (lymph node involvement). The t-

test P value is given for each marker peak. 
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Table 2: Performance of predictive models for classification of clinico-
pathological characteristics in tumour tissue.  
 
CHARACTERISTICS 

1
Advanced 

Dukes’ 
stage 

Poorly 
differentiated 

Lymph 
node 

involvement 

Invasiveness 
2
Disease 

recurrence 

Number of features 5 2 4 9 10 
Positive prediction rate  

     6/12 
 

10/13 
 

5/13 
 

3/7 
 

5/6 

Sensitivity 
3
CI 

    0.500 
0.223-0.777 

        0.769 
  0.460-0.938 

     0.385 
0.151-0.677 

     0.429 
0.118-0.798 

     0.833 
0.364-0.991 

Positive predictive 
value 

CI 

 

    0.750 
0.356-0.955 

 

        0.833 
  0.509-0.971 

 

     0.625 
0.259-0.898 

 

     0.750 
0.219-0.986 

 

     0.833 
0.364-0.991 

Negative prediction rate  
17/19 

 
16/18 

 
15/18 

 
23/24 

 
22/23 

Specificity 
CI 

    0.894 
0.654-0.981 

        0.889 
  0.639-0.981 

      0.833 
0.577-0.956 

     0.958 
0.768-0.998 

     0.957 
0.760-0.998 

Negative predictive 
value 

CI 

 
     0.739 
0.513-0.889 

 
        0.842 
  0.585-0.958 

 
      0.652 
0.428-0.828 

 
      0.852 
0.654-0.951 

 
     0.957 
0.760-0.998 

Absolute error 0.258 0.161 0.355 0.161 0.069 
4
ROC error 0.302 0.171 0.391 0.307 0.105 

Fisher’s exact test P = 0.020 P = <0.001 P = 0.133 P = 0.027 P = <0.001 
1Includes Dukes’ C1 and C2; 2 Median follow-up time for recurrent disease 
patients: 33 months; median follow-up time for disease-free patient: 27 
months (analysis excludes patients who died through surgical complications – 
see Table 1); 3CI = 95% confidence interval; 4ROC = receiver-operator 
characteristics 
 

The KNN algorithm [29] was used in ‘leave-one-out’ cross-validation 
prediction with the number of features (marker peaks) specified. Marker peaks 
were selected using a t-test statistic except for lymph node involvement and 
invasiveness characteristics of tumour tissue where the SNR test statistic was 
used. 
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Table 3: Performance of predictive models for classification of clinico-
pathological characteristics in normal mucosa tissue. The KNN algorithm 
[29] was used in ‘leave-one-out’ cross-validation prediction with the number of 
features (marker peaks) specified. Marker peaks were selected using a t-test 
statistic except for lymph node involvement and invasiveness characteristics 
of tumour tissue where the SNR test statistic was used.  
 

CHARACTERISTICS 
1
Advanced 

Dukes’ 
stage 

Poorly 
differentiated 

Lymph 
node 

involvement 

Invasiveness 
2
Disease 

recurrence 

Number of features 7 5 3 6 7 
Positive prediction rate  

8/13 
 

8/14 
 

     11/14 
 

3/7 
 

0/5 

Sensitivity 
3
CI 

     0.615 
0.322-0.849 

      0.571 
0.296-0.812 

     0.786 
0.488-0.943 

       0.429 
  0.116-0.798 

    0.000 
0.000-0.537 

Positive predictive 
value 

CI 

 

     0.500 
0.255-0.749 

 

      0.444 
0.224-0.686 

 

     0.733 
0.448-0.911 

 

       0.500 
  0.139-0.860 

 

     0.000 
0.000-0.945 

Negative prediction rate  
12/20 

 
9/19 

 
     15/19 

 
23/26 

 
25/26 

Specificity 
CI 

     0.600 
0.364-0.800 

      0.474 
0.252-0.705 

     0.789 
0.539-0.930 

       0.885 
  0.687-0.970 

     0.962 
0.784-0.998 

Negative predictive 
value 

CI 

 
     0.706 
0.440-0.886 

 
      0.600 
0.329-0.825 

 
     0.833 
0.577-0.956 

 
       0.852 
  0.654-0.951 

 
     0.833 
0.645-0.937 

Absolute error 0.394       0.485      0.212 0.212 0.194 
4
ROC error 0.392       0.477      0.212 0.343 0.519 

Fisher’s exact test P = 0.139 P = 0.267 P = 0.001 P = 0.082 P = 0.839 
1Includes Dukes’ C1 and C2; 2 Median follow-up time for recurrent disease 
patients: 33 months; median follow-up time for disease-free patient: 27 
months (analysis excludes patients who died through surgical complications – 
see Table 1); 3CI = 95% confidence interval; 4ROC = receiver-operator 
characteristics 

 

 

 

 

 

 

 

 

Additional files 
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Additional file 1: Examples of raw MALDI-TOF spectral profiles 
Illustrative examples shown for 2012NM and 020T 
 
Additional file 2: Summary of marker peaks discriminating tumour from 
normal mucosa. 
Compilation of m/z values, ranking and statistics for 73 marker peaks. 
 
Additional file 3: Performance of predictive model for discriminating 
tumour and normal mucosa. 
Summary of results of optimised k-NN algorithm on an independent test 
dataset. 
 
Additional file 4: Performance of model for predicting poor 
differentiation based on tumour spectra. 
Summary of results of ‘leave-one-out’ cross-validation k-NN algorithm. 
 
Additional file 5: Performance of model for predicting disease 
recurrence based on tumour spectra. 
Summary of results of ‘leave-one-out’ cross-validation k-NN algorithm. 
 
Additional file 6: Performance of model for predicting lymph node 
involvement based on mucosa spectra. 
Summary of results of ‘leave-one-out’ cross-validation k-NN algorithm. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 









 

A: Tumour spectra

B: Normal mucosa spectra
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