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Abstract 

Background: Chordoma was a typically slow-growing tumor. The therapeutic 

approach to chordoma had traditionally relied mainly on surgical therapy. And the 

main reason for therapeutic failure was resistance to chemotherapy and radiotherapy. 

However the refractory mechanism was not clear. The aim of this study was to 

investigate the expression of three genes (MDR1, HIF-1α, MRP1) associated with 

resistance to chemotherapy and radiotherapy in chordoma and chordoma cell line 

CM-319.  

Materials and Methods: Using immunohistochemical techniques, the expression of 

MDR1, HIF-1α and MRP1 was investigated in 50 chordoma specimen. Using 

RT-PCR and Western blot, the expression of MDR1, HIF-1α and MRP1 was 

investigated in chordoma and chordoma cell line CM-319. 

Results: Expression of MDR1, HIF-1α and MRP1 was observed in 10%, 80% and 

74% of all cases, respectively. Expression of MRP1 was correlated with HIF-1α. On 

the other hand, expression of MDR1 was not correlated with the expression of HIF-1α 
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or MRP1. The expression of HIF-1α and MRP1 was observed, but MDR1was not 

observed in chordoma and CM-319.  

Conclusion: Expression of HIF-1α and MRP1 was observed in most chordoma 

specimen and CM-319 cell line; expression of HIF-1α correlated with MRP1. HIF-1α 

and MRP1 may play a role in the multidrug resistance of chordoma to chemotherapy. 

Introduction 

Chordoma, a primary malignant tumor of the skeleton, was considered to develop 

from a remnant of notochordal cells in the midline skeletal axis [1]. The most 

common sites are the skull base and the sacrococcygeal region. It is typically 

slow-growing tumor, and initial symptoms are usually related to local progression of 

the disease with subsequent compression of adjacent structures. The natural course of 

chordoma is quite grim; most patients do not survive 10 years because of high local 

recurrence rates [2-3].The therapeutic approach to chordoma has traditionally relied 

heavily on surgical control. More recently, radiation therapy has been demonstrated to 

be a valuable modality for local control, particularly with the advent of charged 

particle radiotherapy. Medical therapy continues to be suboptimal in chordoma which 

is relatively refractory to cytotoxic chemotherapy. The main reason for therapeutic 

failure in cases of chordoma involves resistance to chemotherapy and radiotherapy. 

The refractory reason to chemotherapy and radiotherapy may be associated to the 

over-expression of some multidrug resistance related genes and hypoxia inducible 

factor-1α. These factors could also provide potential targets for studies on novel 

therapeutic procedures. 
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Multidrug resistance is a frequent cause of treatment failure in cancer patients. One 

mechanism of MDR is over-expression of ATP-binding cassette (ABC) transporter 

proteins that function as a drug efflux pump. These ABC transporter proteins include 

P-glycoprotein (P-gp) [4], which is a member of the multidrug resistance-associated 

protein (MRP) family. Besides, the recently identified breast cancer resistance protein 

(BCRP), and the lung resistance-related vault protein (LRP) identified as the major 

vault protein (MVP) which are also associated with MDR. 

The hypoxia-inducible factor (HIF) is an alpha (α)/beta (β) heterodimeric DNA 

binding complex and directs extensive transcriptional responses involving the 

induction of genes relevant to tumor progression, such as angiogenesis, metabolism, 

cellular growth, metastasis, and apoptosis. HIF-1α� has emerged as an attractive target 

for cancer therapy [5-6]. 

Over-expression of P-gp and MRP is generally believed to be the mechanism 

responsible for MDR of tumor cells. Hypoxia is a common feature of many malignant 

tumors. HIF-1 is a key factor in altering the biological characteristics of tumors [7-9]. 

Many studies indicate that hypoxia helps to improve chemotherapy and radiotherapy 

resistance of tumors [10-12]. 

To our knowledge, the mechanism of multidrug resistance to chemotherapy remained 

largely unknown in chordoma. The present study aimed to investigate the relationship 

between the expression of HIF-1α, MDR1 and MRP1 in spinal chordoma as well as 

their prognostic and predictive value. 

Materials and methods:  
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Tumors  

A total of 50 primary conventional chordoma specimens between the year 2000 and 

2008 (32 males and 18 females) were used for the study. The lesions were obtained 

from the Department of Pathology (Orthopedics Oncology Institute, Tangdu Hospital, 

P. R. China). 7 lesions were located in the cervical to lumbar spine and 43 in the 

sacrococcygeal region, at the age ranging from 31 to 80 years old (the mean age was 

58). The diagnosis of all cases was confirmed by the co-expression of S-100 protein, 

Cytokeratin, EMA and Vimentin. Histological sections obtained at biopsy or 

surgically resected specimens were routinely stained with haematoxylin and eosin for 

diagnostic purpose. All the specimens were reviewed and diagnosed by two 

pathological experts. No patient in this study had undergone chemotherapy or 

radiotherapy before surgery. Nucleus pulposus tissues were resected in 15 patients 

diagnosed as lubar intervertebral disc protrusion as control. The following 

clinicopathological and immunohistochemical studies were conducted using sections 

from 10% formalin fixed paraffin-embedded tissues, highlighting the representative 

areas of the tumor. Light microscopic parameters and immunohistochemical analysis 

using the antibodies were performed in all 50 cases. 

For RT-PCR, Western blot, 10 tissue samples and nucleus pulposus tissues were 

snap-frozen and stored at -80℃ until use. Surgical samples were kept in RPMI 1640 

cell culture medium before isolation of chordoma cells (within 2h after removal). 

Cell culture 

Human chordoma cell line CM-319 was derived from a case of sacral chordoma [13]. 
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The cell line was maintained at 37℃ under 5% CO2 in RPMI 1640 medium 

(Invitrogene, USA) supplemented with 10% FCS (Gibco, USA)，penicillin (100 

units/ml), streptomycin (100 µg/ml) and 1% (v/v) L-glutamine.  

Immunohistochemical study 

The chordoma tissue samples and CM-319 cells were investigated 

immunohistochemically for the expression of MDR1 (monoclonal, dilution 1:500; 

Santa Cruz Biotechnology, America), MRP1 (monoclonal, dilution 1:500; Santa Cruz 

Biotechnology, America), HIF-1α (monoclonal, dilution 1:500; Santa Cruz 

Biotechnology, America). The sections (4µm) were deparaffinized in xylene and then 

rehydrated through graded alcohols to water. Antigen retrieval for all the studied 

sections was performed in a one-step procedure with the EDTA (PH 8.0) in a 

microwave oven by heating for 5 minutes. Endogenous peroxidase activity was 

blocked using 30% H2O2 for 30 min. Nonspecific binding was blocked with 5% goat 

serum in phosphate buffer solution (PBS). Sections were incubated with the primary 

antibodies at the reference working concentration overnight at 4℃. After washed 

three times with PBS, secondary antibodies, biotinylated anti-mouse or rabbit 

immunoglobulins (dilution 1: 50, Dako, Copenhagen, Denmark) were applied for 30 

minutes at room temperature. Detection was performed using the ChemMateTM 

Envision +HRP/DAB kit (Dako, Copenhagen, Denmark). 3’-3’-Diaminobenzidine 

substrate was used as a chromogen, according to the manufacturer’s instructions. 

Sections were counterstained with hematoxylin. Staining was evaluated independently 

by two pathologists.  
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The degree of staining was graded semi-quantitatively according to the percentage of 

stained cells and their staining intensity. In spinal chordoma, expression of HIF-1α, 

MDR1 and MRP1 was scored as follows: 0, none; 1, <10%; 2, 10–50%; and 3, >50% 

[14-18]. 

RNA isolation and reverse transcription-polymerase chain reaction (RT-PCR) 

Total RNA was isolated either from frozen tissue or CM-319 cells with Trizol reagent 

(Invitrogen, USA).  cDNA was prepared according to standard methods: RNA was 

reverse-transcribed with oligo(dT) primer using 1µg total RNA in a total volume of 

20µl containing transcription buffer, RNase Inhibitor, Prime Script
TM

 RTase. For PCR, 

30 cycles of denaturation (94℃ for 45s), annealing (60℃ for 45s), and elongation 

(72℃ for 1min) was performed using the following primer pairs for HIF-1α [19]: 

forward: 5’-TGGACTCTGATCATCTGACC-3’, reverse: 

5’-CTCAAGTTGCTGGTCATCAG-3’, which yielded a 434-bp product. 30 cycles of 

denaturation (95℃ for 1min), annealing (55℃ for 60s), and elongation (72℃ for 1min) 

were performed using the following primer pairs for MDR1 [20]: forward: 

5’-GAATCTGGAGGAAGACATGACC-3’, 

reverse:5’-TCCAATTTTGTCACCAATTCC-3’, which yielded a 259-bp product.35 

cycles of denaturation (95℃ for 30s), annealing (50℃ for 1 min), and elongation (72℃ 

for 1min) were performed using the following primer pairs for MRP1[21]: forward: 

5’-TCAGCCCTTCCTGACAAGCT-3’, reverse: 

5’-TCTCTGCTGCAGGAGGTCCG-3’, which yielded a 318-bp product. The 

GAPDH [22] control PCR was performed using the following primer pairs: forward: 
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5’-ACCACCATGGAGAAGGCTGG-3’, reverse: 

5’-CTCAGTGTAGCCCAGGATGC-3’, which yielded a 527-bp product. For negative 

controls, the PCR reaction was performed without prior reverse transcription. 

Amplified cDNA was visualized by ethidium bromide staining on 1.5% agarose gels 

on a Bio-Rad gel scanner (Bio-Rad, USA). 

Western Blot  

The chordoma cell line CM-319 and frozen nucleus pulposus tissues were harvested 

and lysed with a cold RIPA protein lysis buffer for 30 minutes on ice. The lysates 

were transferred to Eppendorf tubes and clarified by centrifugation at 12,000 g for 10 

minutes at 4°C. The supernatant was kept in –80°C for future use. The BCA method 

was performed to determine the protein concentration in the supernatant. Samples (30 

µg of total protein each) were boiled at 95°C for five minutes and loaded onto 

SDS-PAGE (5% stacking gel and 8% separating gel), followed with a separation at 80 

volts for about two hours and subsequent transferred onto a nitrocellulose membrane. 

The membrane was blocked in 5% defatted milk for 1 hour at room temperature, and 

was then incubated in the primary antibodies diluted in 5% defatted milk/TBST 

overnight at 4°C (MDR1 1:200, mouse anti-human, Santa Cruz; MRP1, 1:200, rabbit 

anti-human, Santa Cruz; HIF-1α, 1:200, rabbit anti-human, Santa Cruz). The 

membrane was washed three times with TBST and incubated with the second 

antibodies for an hour at room temperature, then washed three times with TBST again. 

The enhanced chemiluminescene (ECL) system (Piece) was used for detection of 

MDR1, HIF-1α and MRP1. Protein bands were visualized and quantified using 
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Quantity-One software (Bio-Rad USA). The MDR1, HIF-1α and MRP1 bands were 

visualized at an apparent molecular weight of 170, 120 and 190 kDa, respectively. 

Statistical analysis 

Relationship between the expression of HIF-1α, MDR1 and MRP1 were defined using 

Kruskal-Wallis test (x
2
 or Fisher’s exact test). Correlations among three markers were 

described using the Spearman rank correlation test. Correlations between the 

expression of three markers and patient age, MIB-1 labelling index were estimated 

using the Mann-Whitney U test. All calculations and analyses were performed with 

SPSS 12.0 for Windows. Significance was considered to be P< 0.05. 

Results 

Expression of HIF-1α, MRP1 and MDR1 in human chordomas 

Different pattern of immunoreactivity was found as membranous or cytoplasmic 

staining for MDR1 and MRP1, while cytoplasmic, part of nuclear positive for HIF-1α. 

MDR1 positive staining was found in five (10%) of the 50 lesions which scored 1 

(Figure 1E, F), and scored 0 in the remaining lesions. Thirteen of the 50 lesions were 

assigned to MRP1 score 0; three of the lesions scored 1; eighteen lesions scored 2; 

and sixteen lesions scored 3. Ten of the 50 lesions were assigned to HIF-1α score 0; 

four of the lesions scored 1; fourteen lesions scored 2; and twenty-two lesions scored 

3. As a consequence, 37 (74%) lesions expressed MRP1 with score ≥1; 16 (32%) 

lesions showed strong expression with score 3 (Figure 1C, D). 40 (80%) lesions 

expressed HIF-1α with score ≥1; 22 (44%) lesions showed strong expression with 

score 3 (Figure 1A, B). Expression of HIF-1α in chordoma was much higher than that 
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in nucleus pulposus; expressiong of MRP1 in chordoma was also much higher than 

that in nucleus pulposus; but expression of MDR1 in chordoma was not different from 

that in nucleus pulposus. (Table 1)  

Correlation of antibody expression in chordomas tumors 

Using Kruskal-Wallis test, we examined the relationship among MDR1, MRP1 and 

HIF-1α. For spinal chordoma tumors, whether primary or recurrent, we found that the 

overall immunoreactivity score of MRP1 or HIF-1α was higher in cases showing 

expression of MDR1. There was no correlation between the expression of MDR1, 

MRP1, HIF-1α expression and patient age, gender. There was no relationship between 

MDR1 expression and either MRP1 or HIF-1α expression. There was a significant 

correlation between HIF-1α expression and MRP1 expression level. Chordomas that 

had high MRP1 expression were also likely to have high HIF-1α expression. (Table 2) 

RT-PCR analysis of HIF-1α, MDR1, MRP1 in chordoma cells 

Anaylsis of HIF-1α, MDR1 and MRP1 mRNA was conducted in CM-319 and 

chordoma by RT-PCR analysis using three pairs of primers designed for the human 

HIF-1α, MDR1 and MRP1 sequences. A 437-, 257-, 328-bp fragment should be 

obtained for HIF-1α, MDR1 and MRP1 as expected, respectively. Amplification of 

547-bp fragment of GAPDH was used as an internal control for the integrity of the 

isolated mRNA. A positive HIF-1αand MRP1, but a negative MDR1 was observed in 

CM-319 cells（Fig. 2）. 

Western blot of HIF, MDR1 and MRP1 in chordoma cells 

Expression of HIF-1α, MDR1 and MRP1 in CM-319 cells was detected by 
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immunoblotting. The results showed no positive band with a molecular weight of 170 

KD in CM-319, which indicated the negative expression of MDR1 in CM-319，but 

strong positive expression of HIF-1α and MRP1 at 120 KD and 190 KD in the 

membrane in CM-319 cells. These results were reproduced in repeat experiments of 

independent membrane preparations and a representative blot is shown in Fig. 3. 

Discussion 

Chordoma was not reported to be sensitive to chemotherapy, similar to many other 

low-grade malignancies. Accordingly, chemotherapy response had been reported in 

patients with high-grade dedifferentiated chordoma, which represented <5% of all 

chordoma [23]. 

The modern multi-modality therapeutic approach to chordoma, combining surgery 

with radiotherapy and chemotherapy, resulted in high cure rates even in advanced 

stage disease, with the pivotal role attributed to chemotherapy. However, there were 

still cases which exhibited either primary or secondary drug resistance with dismal 

outcomes [24]. Drug resistance was a major obstacle for clinical management and was 

attributable to several processes taking place in many kinds of tumor cells. One of 

these processes was the decreased accumulation of drugs within cancer cells due to 

drug efflux mediated by ABC multidrug transporters. Over-expression of these 

transporters was an adverse prognostic factor in a number of cancers. The significance 

of the expression of these ABC proteins in chordoma had not yet been reported.  

Cellular adaptation to hypoxia was a critical step in tumor progression [25]. Hypoxia 

occurred during several pathophysiological processes including tumorigenesis, which 
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was a reduction in the normal level of tissue oxygen tension. Hypoxic cancer cells 

might undergo a series of genetic and metabolic changes that allowed them not only 

to survive and proliferate but also to become more resistance to conventional 

therapies including ionizing radiation and chemical agents. These hypoxic adaptations 

made the tumors more difficult to treat and confer increased resistance to death from 

chemotherapy and radiotherapy. In response to hypoxia, cells altered the expression of 

genes that encoded protein products involved in increasing oxygen delivery and 

activated alternate metabolic pathways that did not require oxygen. This hypoxic 

response was chiefly regulated by HIF-1α. 

Magnon’s [10] findings supported a crucial role for angiogenesis inhibitors in shifting 

the fate of radiation-induced HIF-1α activity from hypoxia-induced tumor 

radioresistance to hypoxia-induced tumor apoptosis. Sullivan [12] determined the 

effects of hypoxia on multiple forms of drug-induced death in human MDA-MB-231 

breast carcinoma cells. These results supported a requirement for HIF-1 in the 

adaptations leading to drug resistance and revealed that decreased drug-induced 

senescence was also an important contributor to the development of hypoxia-induced 

resistance. Nardinocchi [26] reported that the mechanistic explanation of 

hypoxia-induced chemoresistance involved upregulation of HIF-1 pathway and 

inhibition of the p53 pathway that were partly interconnected by the hypoxia-induced 

HIPK2 deregulation. They showed for the first time that hypoxia-induced HIPK2 

deregulation was counteracted by zinc that restored HIPK2 suppression of HIF-1 

pathway and reactivated p53 apoptotic response to drug, underscoring the potential 
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use of zinc supplementation in combination with chemotherapy to address hypoxia 

and improve tumor treatment. It has been recently reported [27-28] that the 

transcription of MDR1 gene was controlled by hypoxia; HIF-1 binding to a putative 

binding site of human MDR1 promoter was critical for the transcription. Song [29] 

demonstrated that hypoxia-induced chemoresistance to cisplatin and doxorubicin in 

NSCLC cells was through the HIF pathway. MDR1 regulation may not be involved in 

hypoxia-induced chemoresistance. Combining delivery of HIF-1α RNAi lentiviral 

vector with cisplatin-related chemotherapy regimens could enable us to develop more 

effective strategy for NSCLC therapy. Ding [15]
 
suggested that hypoxia induce the 

expression of HIF-1α and P-gp in colon carcinoma and HIF-1α expression may be 

associated with P-gp and interactively involved in the occurrence of tumor multidrug 

resistance. 

In this study, we described the expression of these three different proteins associated 

with multidrug resistance and radiotherapy in chordoma. All the tested markers 

exhibited some changes in their expression pattern in chordoma compared with 

normal nucleus pulpous. The most prominent reduction in expression was observed 

for MDR1 which was very weakly expressed or unexpressed in more than 50 % of the 

chordoma samples studied. To our knowledge, this was the first study on genes 

associated with resistance to chemotherapy and radiotherapy in spinal chordoma. The 

current results showed that MRP1was expressed in the membranous and intracellular 

regions; HIF-1α was expressed in the cell cytoplasmic and nuclear regions, whereas 

MDR1 was not expressed in the chordoma tissues or CM-319 cell.  
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ABC multidrug transporters also played an important role in the establishment of 

important biological barriers such as the placenta, the blood-brain barrier, and the 

blood-testes barrier. Although the over-expression of these transporters was a 

common phenomenon in chemoresistant tumor cells, we found that MRP1 and 

HIF-1α expression was upregulated in most chordoma tissues in comparison to 

normal tissues. It had been proposed that upregulation of ABC multidrug transporters 

in cancers may play a role in tumorigenesis by enhancing exposure of tissues to 

carcinogenic xenobiotics. Interestingly, the expression of MDR1 was not inversely 

expressed in the chordoma tissues. 

New data on HIF-1 signaling and the potential for targeted therapies, including 

combinations of hormonal therapies for cancer and selective investigational HIF-1α 

inhibiting small molecules would be discussed. Another mechanism by which hypoxia 

could increase chemoresistance was to enhance the expression of MDR1 gene via a 

HIF-1-dependent regulation
 
[30-31].  

Abbreviations: HIF-1α: hypoxia-inducible factor alpha (α) heterodimeric; 

MDR1/P-gp: multidrug resistance gene /P-glycoprotein; MRP1: multidrug 

resistance-associated protein 1 
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Figure Legends  

Figure 1 Immunohistochemical staining of HIF-1α, MDR1 and MRP1 in 

chordoma, CM-319 and nucleus pulpous.  

With immunohistochemical staining, the expression of chemotherapy resistant 

proteins using primary antibody to HIF-1α (A, B, G), MDR1 (E, F, I) and MRP1 (C, 

D, H) was determined in chordoma (B, D, F) and CM-319 (A, C, E). Intense 

membrane and cytoplasmic staining of MRP1（×400）and cytoplasmic and nuclus 

staining of HIF（×400）. Negative immunostaining of MDR1 was found in chordoma 

and CM-319. In control, negative immunostaining of HIF-1, MRP1 and MDR1（G, H, 

I） was found in nucleus pulposus. 

Figure 2 RT-PCR analysis of MDR1, HIF-1α and MRP1 messenger RNA (mRNA) 

expression in CM-319 cell line and chordoma.  
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A significant HIF-1α and MRP1 mRNA expression was observed, but a negative 

MDR1 expression was observed in CM-319 cell line and chordomas. But negative 

expression of MDR1, HIF-1α and MRP1 messenger RNA (mRNA) in nucleus 

pulposus. Amplification of a 547-bp fragment of GAPDH was used as an internal 

control for the integrity of the isolated mRNA. Lane 1: Marker; Lane 2: GAPDH; 

Lane 3: HIF-1α; Lane 4: MRP1; Lane 5: MDR1. 

Figure 3 Western blot analysis of HIF-1α, MDR1 and MRP1 protein in tumor 

tissues and CM-319 cell line. 

Lane1: MRP1; lane2: HIF-1α; lane 3: MDR1; lane4: conditioned medium. Molecular 

weight markers are identificated in the left side (kD).  

 

Table 1 Expression of HIF-1α, MRP1 and MDR1 in chordoma tissue and nucleus 

pulposus tissue 

 positvive negative positive rate χ
2
 P 

HIF-1α(n) 

chordoma 40 10 80% 

nucleus pulposus 3 12 20% 

18.55 <0.005 

MRP1 (n) 

chordoma 37 13 74% 

nucleus pulposus 4 11 26.7% 

11.10 <0.005 

MDR1 (n) 

chordoma 5 45 10% 0.343 >0.5 
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nucleus pulposus 3 12 20%   

 

Table 2  Correlation with the expression of HIF-1αααα, MRP1 

 HIF-1α(n) MRP1(n) r P 

negative 0 10 13 

1 4 3 

2 14 18 positive 

3 22 16 

0.8 <0.01 
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