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Abstract  

Background: 

MicroRNA (miRNA) signatures are not only found in cancer tissue but also in 

blood of cancer patients. Specifically, miRNA detection in blood offers the 

prospect of a non-invasive analysis tool.  

 

Methods: 

Using a microarray based approach we screened almost 900 human miRNAs to 

detect miRNAs that are deregulated in their expression in blood cells of 

melanoma patients. We analyzed 55 blood samples, including 20 samples of 

healthy individuals, 24 samples of melanoma patients as test set, and 11 

samples of melanoma patients as independent validation set.  

 

Results: 

A hypothesis test based approch detected 51 differentially regulated miRNAs, 

including 21 miRNAs that were downregulated in blood cells of melanoma 

patients and 30 miRNAs that were upregulated in blood cells of melanoma 

patients as compared to blood cells of healthy controls. The tets set and the 

independent validation set of the melanoma samples showed a high correlation 

of fold changes (0.81). Applying hierarchical clustering and principal component 

analysis we found that blood samples of melanoma patients and healthy 

individuals can be well differentiated from each other based on miRNA 

expression analysis. Using a subset of 16 significant deregulated miRNAs, we 

were able to reach a classification accuracy of 97.4%, a specificity of 95% and a 



sensitivity of 98.9% by supervised analysis. MiRNA microarray data were 

validated by qRT-PCR. 

 

Conclusions: 

Our study provides strong evidence for miRNA expression signatures of blood 

cells as useful biomarkers for melanoma.     

  

 

 

Background 

For many human cancer entities, there is still a lack of high-performing 

biomarkers. In the past years, different tumor markers have been identified not 

only in tissue but also in blood, urine, or saliva of cancer patients. Several types 

of biomarkers can be distinguished. Prognostic biomarkers differentiate between 

“good outcome” and “bad outcome” tumors. Predictive biomarkers assess the 

probability for a treatment response, and pharmacodynamic biomarkers can be 

used to guide dose selection for certain drugs [1]. Furthermore, early detection 

biomarkers can indicate the onset of a tumor. Most recently, microRNAs 

(miRNAs) have been introduced as new cancer markers in the biomarker 

landscape and are suggested as targets or future therapy approaches [2, 3]. 

MiRNAs are endogenous small noncoding RNAs that regulate translation and 

transcription. The expression of miRNAs has been demonstrated to be highly 

specific for tissues and developmental stages. In addition, miRNAs appear to 

contribute to the molecular classification of tumors [4].  



Recent proof-of-principle studies indicate that analysis of miRNA expression in 

sera and peripheral blood cells is a promising approach for a blood-based 

diagnosis of cancer and other diseases [5-9]. We recently showed that complex 

miRNA expression patterns, rather than single miRNAs, can serve as biomarker 

signatures. Specifically, we were able to separate patients with different human 

diseases, including lung cancer [10] and Multiple Sclerosis [11] from healthy 

individuals by blood testing. 

In this study, we describe a highly specific miRNA expression profile for 

melanoma patients. Malignant melanomas represent the most aggressive form of 

skin cancer. According to the World Health Organization (WHO) the number of 

melanoma cases continues to increase in incidence, faster than any other type of 

cancer. Melanoma accounts for about 4% of skin cancer cases but for as many 

as 74% of all deaths of skin cancer. The 5-year survival rate is as low as 5% for 

patients with advanced melanoma [12]. 

Currently, there is no promising standard therapy available for the treatment of 

patients with melanoma in an advanced stage. In order to improve prognosis it is 

crucial to detect melanoma in a very early stage, especially with metastasis 

occuring very early in the progression of the disease. 

Several studies described altered miRNA expression fingerprints in melanoma 

with the majority of these studies analyzing miRNA expression in formalin fixed 

paraffin embedded cancer tissue [13-15] and few studies analyzing cancer cell 

lines [16, 17]. Most notably, miRNAs have also been shown to be significantly 

correlated with metastasis in melanoma [18].  

As of now there is, however, no evidence for altered miRNA expression in 

peripheral blood samples of melanoma patients. Here we used the Geniom Real 



Time Analyzer (GRTA) microarray platform (febit biomed GmbH, Heidelberg) to 

analyze all human miRNAs as annotated in the Sanger miRBase version 12.0 

[19-21].  

In total, we analyzed 35 blood samples of melanoma patients and 20 blood 

samples of healthy individuals.  The 35 melanoma samples include a test set of 

24 samples and an independent validation set of 11 melanoma samples.  

As analysis tools we employed different well known statistical measures, 

including t-test, Wilcoxon Mann-Whitney test (WMW), a linear model with p-

values computed by an empirical bayes approach (limma) [22, 23], Area under 

the receiver operator characteristic curve (AUC), and fold changes. We classified 

melanoma patients and healthy subjects using Support Vector Machines (SVM) 

[24] that have been evaluated with a filter subset selection technique and 

standard 10-fold cross validation (CV).    

Our study provides evidence for a novel and complex miRNA expression profile 

in blood cells of melanoma patients. 

 

 

 

 

 

 

 

 

 

 



Methods 

 

Samples 

The study was conducted in compliance with the Helsinki Declaration. The local 

ethics committee (“Ärztekammer des Saarlandes”) approved the study. All 

participants of this study have given written informed consent. The 35 blood 

samples of melanoma patients were collected in two independent institutions. We 

used the 24 blood samples from one institution as test set and the 11 blood 

samples from the second institution as validation set. The control samples were 

obtained from 20 healthy volunteers. Information on age and sex of all blood 

donors and detailed clinical informations for all melanoma patients is given in the 

Additional Files (Additional File 1, Table S1). 

  

miRNA extraction and microarray screening 

Blood drawing of melanoma patients and isolation of RNA was performed as 

previously described [10].  Samples were analyzed with the Geniom Realtime 

Analyzer (GRTA, febit gmbh, Heidelberg, Germany) using the Geniom Biochip 

miRNA homo sapiens. Each array contains 7 replicates of 866 miRNAs and 

miRNA star sequences as annotated in the Sanger miRBase 12.0 [19-21]. 

Sample labeling with biotine was carried out by microfluidic-based enzymatic on-

chip labeling of miRNAs (MPEA [25]). 

In brief, following hybridization of the miRNA with the Geniom biochip for 16 

hours at 42°C the biochip was washed automatically and a program for signal 

enhancement was processed with the GRTA. The detection pictures were 



evaluated using the Geniom Wizard Software. For each array, the signal 

intensities for all miRNAs were extracted from the raw data file. As each miRNA 

is spotted in seven replicates, we obtained seven intensity values for each 

miRNA. Following background correction, we calculated the median of the seven 

replicate intensity values for each miRNA. We applied quantile normalization, to 

normalize the data across different arrays [26]. Further analysis was carried out 

using the normalized and background subtracted intensity values. 

The microarray data were deposited in the publicly available database Gene 

Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/projects/geo/, 

GSE20994). 

 

Measures for single biomarker analysis 

First, we analyzed the miRNA expression to detect miRNAs that show a different 

expression in different groups of blood donors. To this end, we applied different 

statistical measures to monitor differences between these measures. The set of 

approaches contains parametric t-test (unpaired, two-tailed), Wilcoxon Mann-

Whitney test (WMW, unpaired, two-tailed), a linear model with p-values 

computed by an empirical Bayes approach (limma) [22, 23], the area under the 

receiver operator characteristics curve (AUC) and fold quotients. The AUC is 

here defined as the ”value” of a miRNA with respect to its ability to separate two 

different groups of blood donors. We calculated the AUC for each miRNA as 

follows: the normalized intensities of all miRNAs for all blood samples from 

melanoma patients and healthy controls were used as threshold values. For all 

thresholds t, we considered RNA from blood of melanoma patients that generate 

miRNA intensity values above t as true positives (TP), RNA from blood of 



melanoma patients that generate miRNA intensity values below t as false 

negatives (FN), RNA from blood of healthy subjects that generate miRNA 

intensity values below t as true negatives (TN), and RNA from blood of healthy 

subjects that generate miRNA intensity values above t as false positives (FP). 

Likewise for all thresholds, specificity (TN/(TN+FP)) and sensitivity (TP/(TP+FN)) 

were computed. The Receiver Operator Characteristics (ROC) curve shows the 

sensitivity as function of one minus the specificity. AUC values can range from 

0.5 to 1. An AUC of 0.5 for a miRNA means that the distribution of intensity 

values generated by RNA from blood of melanoma patients and healthy subjects 

cannot be distinguished. The more the AUC value of a miRNA differs from 0.5, 

the better this miRNA is suited to separate between the two groups of blood 

donors (melanoma patients and healthy individuals). An AUC of 1 corresponds to 

a perfect separation.  

For all hypothesis tests, the resulting p-values were adjusted for multiple testing 

by Benjamini-Hochberg [27, 28] adjustment. We compared detected sets of 

relevant miRNAs by using venn-diagrams.  

 

Cluster Analysis and Principal Component Analysis 

We carried out a hierarchical clustering approach to detect clusters of miRNAs 

and blood samples. In detail, we applied bottom up complete linkage clustering 

and used the Euclidian distance measure.  

In addition, we carried out a standard principal component analysis (PCA) and 

provide scatter plots of the first versus second principal component [29, 30].  

 



 

 

Classification analysis 

In addition to the single biomarker analysis and unsupervised clustering we also 

carried out classification of samples using miRNA expression patterns by 

applying Support Vector Machines (SVM, [24]) as implemented in the R e1071 

package [31]. In detail, different kernel (linear, polynomial, sigmoid, radial basis 

function) SVM have been evaluated, with the cost parameter sampled from 0.01 

to 10 in decimal powers. The measured miRNA expression profiles were 

classified using 100 repetitions of standard 10-fold cross validation (CV). As a 

subset selection technique we applied a filter approach based on t-test. In detail, 

the s miRNAs with lowest p-values were computed on the training set in each 

fold of the CV, where s was sampled from 1 to 866 (corresponding to 866 

analyzed human miRNAs and miRNA star sequences). The respective subset 

was used to train the SVM and to carry out the prediction of the test samples. As 

result, the mean accuracy, specificity, and sensitivity were calculated together 

with the 95% Confidence Intervals (95% CI) for each subset size. To check for 

overtraining we applied permutation tests. Here we sampled the class labels 

(melanoma and healthy) randomly and carried out classifications using the 

permuted class labels. All statistical analysis was performed using R [31]. 

 

quantitative Real Time-PCR 

To validate the microarray results we performed quantitative Real Time-PCR 

(qRT-PCR). We analyzed 13 miRNAs that showed significant deregulation in the 



microarray experiments, including hsa-miR-106b, hsa-miR-107, hsa-miR-1280, 

hsa-miR-151-3p, hsa-miR-17*, hsa-miR-18a, hsa-miR-199a-5p, hsa-miR-20a, 

hsa-miR-20b, hsa-miR-30a, hsa-miR-362-3p, hsa-miR-550*, and hsa-miR-664, 

using TaqMan® MicroRNA Assays (Applied Biosystems). The qRT-PCR was 

performed on ten melanoma samples and ten samples of healthy individuals. We 

used RNU48 as endogenous control. 

 

 

 

 

Results 

 

Using the Geniom Realtime Analyzer microarray platform, we analyzed the 

expression of 866 miRNAs in blood cells of 20 healthy volunteers and 35 patients 

with melanoma. Out of these 35 patients, 31 (88.57%) had melanoma of clinical 

stages 0, IA, IB, IIA, or IIB. One patient (2.86%) had a stage IIIB melanoma, and 

three patients (8.57%) had stage IV melanoma (see Additional file 1, Table S1).  

 

To achieve improved statistical significance we compared the three hypothesis 

tests including t-test, Wilcoxon Mann-Whitney test (WMW), and a linear model 

with p-values computed by an empirical bayes approach (limma). We considered 

all miRNAs with adjusted p-value below 0.001 to be significant.  All tests 

combined identified 213 miRNAs that showed a different expression in blood of 

melanoma patients as compared to the blood of healthy individuals.  A more 

detailed view on the results of the three hypothesis tests is presented as three-



way venn-diagram in Figure 1.  In total, 117 miRNAs were detected in all three 

tests, additional 35 in both the WMW test and the t-test, additional 22 in both the 

empirical bayes test and the WMW test, and additional 4 in both the empirical 

bayes test and the t-test. With 167 miRNAs the t-test detected the highest 

number of deregulated miRNAs.  Since the majority of the 213 miRNAs was 

identified in all three tests, the data demonstrate a high concordance of the 

employed hypothesis tests.  

 

To further specify our search for miRNAs differentially expressed between blood 

of melanoma patients and of healthy controls, we added two additional filters.  

First, we only considered miRNAs that were at least 2-fold up- or down-regulated 

in their expression level in blood cells of melanoma patients compared to blood 

cells of healthy controls. Second, we calculated the median intensity values 

combined  for all melanoma and combined  for all normal blood samples and  

excluded miRNAs, with a combined median intensity value below 100 in either 

melanoma or in normal blood samples. Median intensity values lower than 100 

are likely to be due to background noise. By using this high stringent threshold 

we tried to avoid false positives. Using these two empirically determined 

thresholds we identified 51 differentially expressed miRNAs, including 21 

miRNAs downregulated and 30 miRNAs upregulated in blood cells of melanoma 

patients compared to blood cells of healthy individuals. Table 1 shows the 51 

significantly deregulated miRNAs sorted by their AUC value. We validated the 

microarray results of 13 out of the above mentioned 51 miRNAs by using qRT-

PCR. We analyzed ten randomly selected samples of melanoma patients and ten 

randomly selected samples of healthy controls that have already been analyzed 

by microarray. We found a correlation of 0.93 between the microarray data and 



the qRT-PCR data. Table 2 comprises the comparison of the fold changes in the 

miRNA expression between the analyzed melanoma and control samples of the 

microarray results and the qRT-PCR results. 

We further compared the fold quotients in both the 24 melanoma blood samples 

that were used as test set and the 11 melanoma blood samples that were used 

as validation set. To reduce the noise, we only considered miRNAs with a 

median intensity level of at least 50 in any of the two sets. In this step we used a 

less stringent threshold of 50 to obtain more data points and little background 

noise has a less stringent influence on the correlation calculations. We computed 

for each melanoma set (i.e. test set and validation set) the fold quotient versus 

the controls and determined the correlation. The scatter-plot in Figure 2 presents 

the logarithm of fold quotients of the test set on the x-axis and of the validation 

set on the y-axis. The correlation of fold quotients between both melanoma test 

and validation set was as high as 0.81. These results demonstrate the 

reproducibility of the miRNA profiling in blood cells of melanoma patients.  

 

We also analyzed the miRNA expression profiles of the melanoma test set, the 

melanoma validation set and the set of healthy controls by hierarchical clustering. 

Since many miRNAs contributed mostly noise to the clustering, we used only the 

50 miRNAs with the highest data variance for clustering. As shown in the 

dendrogram in Figure 3, control samples and melanoma sample fall in two 

different major clusters. Melanoma samples of the test set and melanoma 

samples of the validation set are mixed within the same major cluster. Splitting 

the dendrogram in two groups and computing a contingency table we found that 

all control samples belong to one cluster and all melanoma samples belong to 



the other cluster. We obtained a p-value of approx. 3 * 10-16 for this clustering 

using two-tailed Fisher’s Exact test. 

 

To provide a low-dimensional visualization of the high-dimensional data we 

carried out a principal component analysis. Investigating the eigenvalues of the 

first principal components, we found that the first component contained the 

highest overall data variance while the first and second principal component 

combined contributed to approximately half of the overall variance. A plot of the 

first versus the second principal component is shown in Figure 4.  The principal 

component analysis largely confirmed the results of the hierarchical clustering. 

Again, the control samples could clearly be differentiated from the melanoma 

samples.  

 

To confirm the results of the unsupervised cluster analysis, we employed a 

supervised statistical learning approach. We carried out SVM classification 

together with a feature subset selection relying on t-test p-values. In detail, we 

applied radial basis function SVMs that have been evaluated using 10-fold CV. 

The CV runs have been repeated 100 times to estimate the classification 

variance. To test for data overfitting, we carried out 100 permutation tests, i.e., 

we applied the same statistical approach to a data set with randomly assigned 

class labels for melanoma and control samples. The best classification accuracy 

has been obtained by using a subset that consists of 16 miRNAs including hsa-

miR-186, hsa-let-7d*, hsa-miR-18a*, hsa-miR-145, hsa-miR-99a, hsa-miR-664, 

hsa-miR-501-5p, hsa-miR-378*, hsa-miR-29c*, hsa-miR-1280, hsa-miR-365, 

hsa-miR-1249, hsa-miR-328, hsa-miR-422a, hsa-miR-30d, and hsa-miR-17*. By 

using these 16 miRNAs, we separated melanoma from healthy controls with a 



high accuracy, specificity and sensitivity of 97.4%, 95.0% and 98.9%, 

respectively. The results of all 100 CV runs and 100 permutation tests are 

provided as box-plots in Figure 5. For classification purposes the above 

mentioned 16 miRNAs do not have to meet the critera of an at least 2-fold 

deregulation and a combined median >100 in either all melanoma or all normal 

samples. Therefore, these 16 miRNAs are not necessarily a subset of the 51 

differentially expressed miRNAs that were listed in Table 1.  

 

An example of a classification result is shown in Figure 6.  In detail, we 

determined the probability of being a melanoma patient or a healthy control 

based on the miRNA expression profiles of blood cells. The probability is 

calculated as the logarithm of the quotient of the probabilities to be diseased and 

the probability to be healthy. If the quotient of the probability is greater than one, 

e.g. the logarithm is greater zero, the sample is more likely to be a melanoma 

sample than a control sample. As shown in Figure 6, the majority of melanoma 

samples have logarithmized quotients of greater 0 while the majority of control 

samples have logarithmized quotients of below 0. These results further 

demonstrate that miRNA expression profiling of blood cells can separate 

melanoma patients from healthy individuals with high sensitivity and specificity.    

 

 

 

 

Discussion 

 



One of the major challenges towards an improved melanoma treatment is the 

identification of appropriate markers for a most early detection of the primary 

lesion. For patients with stage I melanoma the overall 5-year survival rate 

exceeds 90% but can fall below 10% for stage III or IV melanoma.  It is especially 

important to detect melanoma before metastasis that occurs early during 

melanoma progression. Equally important are the prognosis of the patients’ 

outcome and the prediction of the response to treatment. Since melanoma is a 

very heterogeneous disease, complex biomarker profiles appear to be best 

suited for the task of early tumor detection and the monitoring of high-risk 

patients.  

 

In our study we investigated the miRNA expression of almost all currently known 

human miRNAs and miRNA star sequences in peripheral blood cells of 

melanoma patients. The majority (88.57%) of the melanoma patients had a 

melanoma in clinical stage 0, IA, IB, IIA, or IIB. Comparing miRNA expression 

profiles in blood cells of melanoma patients and in blood cells of healthy donors, 

we detected 51 differentially expressed miRNAs. A total of 30 miRNAs was 

upregulated in blood cells of melanoma patients, whereas 21 miRNAs were 

downregulated. We used highly stringent selection criteria for the identification of 

deregulated miRNAs to reduce the false discovery rates, a problem that has 

recently been addressed by McCarthy et al. [32]. 

We compared our results with the data deposited in the Human miRNA and 

Disease Database (HMDD, http://202.38.126.151/hmdd/mirna/md/ [33]). Most 

notably, the minority of the 51 deregulated miRNAs is annotated as cancer 

related miRNA in the HMDD. For example, hsa-miR-216a, the miRNA with 

second best AUC value has been described to be downregulated in lung 



neoplasm and is likewise more than 2-fold downregulated in melanoma in our 

study [34]. The miRNA hsa-miR-186, the upregulated miRNA with highest AUC 

has been described to be upregulated in pancreatic cancer [35]. However, most 

studies published so far differ significantly from our study in two factors: First, the 

majority of studies describes the miRNA expression analysis in cancer tissues, 

and second, most studies use less complete miRNA sets. Thus, it is evident that 

we also identified miRNAs as significantly deregulated in blood cells of 

melanoma patients that are not yet reported as deregulated in cancer or any non-

cancer disease. One example is miR-1280 that is upregulated 2.5-fold in our 

studies but not deposited in the HMDD. Out of the 51 significantly deregulated 

miRNAs the minority of these miRNAs has been recorded in the HMDD as 

deregulated in any human cancer or non-cancer disease. In a study on genomic 

alterations that were related to miRNA genes, Zhang and colleagues reported 

196 miRNA genes with copy number gains and 235 miRNA genes with copy 

number losses in melanoma [36]. They also showed a copy number alteration for 

the four miRNAs hsa-miR-214, hsa-miR-106b, hsa-miR-18a, and hsa-miR-20a, 

all of which were deregulated in melanoma blood cells as shown in our study. In 

detail, we found a downregulation of miRNAs hsa-miR-18a and hsa-miR-20a in 

blood cells of melanoma patients.  Zhang et al. showed copy number loss for the 

corresponding miRNA genes. However, while we also found a downregulation of 

the miRNAs hsa-miR-214 and hsa-miR-106b in melanoma blood cells, Zhang et 

al. reported copy number gains for the corresponding miRNA genes. Without 

knowing the nature of the blood cells that give rise to the miRNA pattern, it is 

premature to speculate on a possible link between the miRNA pattern obtained 

from patients’ blood and the pattern obtained from the tumor.   

 



Out of the 51 miRNAs that were deregulated in blood of melanoma patients four 

miRNAs, namely hsa-miR-99a, hsa-miR-365, hsa-miR-30a, and hsa-miR-146a, 

were deregulated in non-cancer skin diseases [37, 38]. The miRNAs hsa-miR-

99a and hsa-miR-365 are downregulated in Lupus vulgaris [38], but were 

upregulated in blood of melanoma patients. The miRNA hsa-miR-30a was 

upregulated both in Lupus vulgaris [38] and in blood of melanoma patients. 

Likewise miRNA hsa-miR-146a was upregulated both in blood cells of melanoma 

patients and in non-cancer patients e.g. eczema patients [37]. The latter miRNA 

was also overexpressed in psoriatic lesional skin of psoriasis patients compared 

to healthy skin [39, 40]. The miRNA hsa-miR-146a that contributes to an 

abnormal activation of type I interferon pathway in human lupus [41] was also 

upregulated in blood cells of melanoma patients.   

While these first results do not allow any conclusion on the disease specificity of 

any of the addressed miRNAs, future miRNA profiling of a larger number of 

different human diseases will contribute to the identification of miRNAs that play 

a crucial role in specific human diseases. Furthermore, the identification of 

miRNAs will contribute to the overall understanding of the molecular alterations 

underlying disease development including melanoma progression.  

 

In addition, and in keeping with the focus of this study, miRNA expression 

profiling especially of human blood has the potential to serve as future tumor 

biomarker.  Applying SVM with a feature subset selection method we used a set 

of 16 miRNAs to differentiate melanoma patients and healthy blood donors with 

high accuracy (97.4%). Recently, we used a subset of 24 miRNAs to discriminate 

between blood cells of patients with lung cancer and healthy controls with an 

accuracy of 95.4% [10]. Except for lung cancer, there are no other studies that 



determine and compare miRNA profiles in blood cells of cancer patients and of 

normal controls [10, 42].  A recent study by Chen et al. compared miRNA profiles 

in blood cells and in serum but did not separate cancer patients from normal 

controls by miRNA profiling [42]. Based on our studies melanoma patients can be 

separated from lung cancer patients and Multiple Sclerosis patients with 

approximately 90% accuracy by the miRNA expression signature. Ultimately, the 

classification accuracy depends on the choice of the control group and the choice 

of the control group depends on the questions to be answered by the miRNA 

expression profile. For example, investigating the usefulness of miRNA 

signatures as prognostic, predictive, pharmacodynamic or early detection 

biomarkers requires different control groups. 

 

In this study we provide first evidence for the potential of miRNA expression 

profiles to distinguish patients with melanoma from healthy control subjects 

based on the analysis of peripheral blood cells. Until now it is not known which 

type of blood cells is responsible for the differences in the miRNA expression 

pattern. It is conceivable that the cancer miRNA signatures arise as part of a 

cancer-associated immune response. However, any hypothesis about the origin 

of the miRNA signatures generated from blood awaits experimental confirmation.  

Identifying the blood component responsible for specific miRNA signatures will 

likely contribute not only to our understanding of the mechanism underlying the 

pattern, but also to an improved prediction and prognosis of a disease.   

Finally, it remains to be proven which cancers or non-cancer diseases also show 

a specific miRNA expression pattern that might be used to tell these diseases 

apart form controls and possibly apart from each other.   



 

 
 
 
 
 
 
Conclusions 

 

Using a subset of 16 significant deregulated miRNAs, we distinguished 

melanoma patients from healthy individuals with an accuracy of 97.4%. The high 

specificity and sensitivity of the miRNA signatures generated for blood cells of 

melanoma patients underlines the potential of this approach for future diagnostic 

applications. Blood based miRNA signatures may be ideally suited as prognostic, 

predictive, or pharmacodynamic biomarkers not only for melanoma but also for 

other tumors. 

 

 

 

Abbreviations 

AUC = area under the receiver operator characteristics curve, CV = cross 

validation, FP = false positive, FN = false negative, GRTA= Geniom Realtime 

Analyzer, HMDD = Human miRNA and Disease Database, limma = linear model 

with p-values computed by an empirical bayes approach, miRNA = microRNA, 

MPEA = microfluidic-based enzymatic on-chip labeling of miRNAs, PCA = 

principal componenet analysis, ROC = receiver operator characteristics curve, 

SVM= Support Vector Machines, TP = true positive, TN = true negative, WMW = 

Wilcoxon Mann-Whitney test 

 



 

Competing interests: 

AK: salary (febit), patent ( febit); AB salary (febit), patent ( febit); MS salary 

(febit); FW salary (febit); AW salary (febit); 

 

 

Authors’ contribution 

PL contributed to study design and developed the protocol for miRNA extraction, 

extracted the miRNAs from blood cells, and contributed in paper writing. AK 

contributed to study design, carried out the statistical analyses, initiated the study 

and contributed in paper writing.  AB performed the miRNA screening. JR, KR, 

and SUJ collected the blood samples and contributed in paper writing. HPL 

contributed in the bio-statistical analysis. EM contributed in study design and 

development of miRNA extraction, supervised the study and contributed in paper 

writing. All authors read and approved the final manuscript. 

 

 

 

 

Acknowledgements 

We want to thank the healthy individuals and melanoma patients for participating 

in this study. This work was supported by funding of the German Ministry of 

Research Education (BMBF) under contract 01EX0806 and by Hedwig-Stalter 

foundation. 

 

 



 

References 

 

1. Sawyers CL: The cancer biomarker problem. Nature 2008, 

452(7187):548-552. 

2. Cho WC: MicroRNAs in cancer - from research to therapy. Biochim 

Biophys Acta 2009, 1805(2):209-17. 

3. Cho WC: MicroRNAs: Potential biomarkers for cancer diagnosis, 

prognosis and targets for therapy. Int J Biochem Cell Biol 2009, [Epub 

ahead of print]. 

4. Croce CM, Calin GA: miRNAs, cancer, and stem cell division. Cell 

2005, 122(1):6-7. 

5. Wang QZ, Xu W, Habib N, Xu R: Potential uses of microRNA in lung 

cancer diagnosis, prognosis, and therapy. Curr Cancer Drug Targets 

2009, 9(4):572-594. 

6. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Hood LE, 

Galas DJ: Circulating microRNAs, potential biomarkers for drug-

induced liver injury. Proc Natl Acad Sci U S A 2009, 106(11):4402-4407. 

7. Cortez MA, Calin GA: MicroRNA identification in plasma and serum: a 

new tool to diagnose and monitor diseases. Expert Opin Biol Ther 

2009, 9(6):703-711. 

8. Chin LJ, Slack FJ: A truth serum for cancer--microRNAs have major 

potential as cancer biomarkers. Cell Res 2008, 18(10):983-984. 

9. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, 

Benjamin H, Kushnir M, Cholakh H, Melamed N et al: Serum microRNAs 

are promising novel biomarkers. PLoS One 2008, 3(9):e3148. 



10. Keller A, Leidinger P, Borries A, Wendschlag A, Wucherpfennig F, 

Scheffler M, Huwer H, Lenhof HP, Meese E: miRNAs in lung cancer - 

studying complex fingerprints in patient's blood cells by microarray 

experiments. BMC Cancer 2009, 9:353. 

11. Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M, Lenhof 

HP, Ruprecht K, Meese E: Multiple sclerosis: microRNA expression 

profiles accurately differentiate patients with relapsing-remitting 

disease from healthy controls. PLoS One 2009, 4(10):e7440. 

12. Mueller DW, Bosserhoff AK: Role of miRNAs in the progression of 

malignant melanoma. Br J Cancer 2009, 101(4):551-556. 

13. Liu A, Tetzlaff MT, Vanbelle P, Elder D, Feldman M, Tobias JW, 

Sepulveda AR, Xu X: MicroRNA Expression Profiling Outperforms 

mRNA Expression Profiling in Formalin-fixed Paraffin-embedded 

Tissues. Int J Clin Exp Pathol 2009, 2(6):519-527. 

14. Ma Z, Lui WO, Fire A, Dadras SS: Profiling and discovery of novel 

miRNAs from formalin-fixed, paraffin-embedded melanoma and 

nodal specimens. J Mol Diagn 2009, 11(5):420-429. 

15. Glud M, Klausen M, Gniadecki R, Rossing M, Hastrup N, Nielsen FC, 

Drzewiecki KT: MicroRNA expression in melanocytic nevi: the 

usefulness of formalin-fixed, paraffin-embedded material for miRNA 

microarray profiling. J Invest Dermatol 2009, 129(5):1219-1224. 

16. Mueller DW, Rehli M, Bosserhoff AK: miRNA expression profiling in 

melanocytes and melanoma cell lines reveals miRNAs associated 

with formation and progression of malignant melanoma. J Invest 

Dermatol 2009, 129(7):1740-1751. 



17. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, 

Israel MA: Characterization of microRNA expression levels and their 

biological correlates in human cancer cell lines. Cancer Res 2007, 

67(6):2456-2468. 

18. Worley LA, Long MD, Onken MD, Harbour JW: Micro-RNAs associated 

with metastasis in uveal melanoma identified by multiplexed 

microarray profiling. Melanoma Res 2008, 18(3):184-190. 

19. Griffiths-Jones S: miRBase: the microRNA sequence database. 

Methods Mol Biol 2006, 342:129-138. 

20. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: 

miRBase: microRNA sequences, targets and gene nomenclature. 

Nucleic Acids Res 2006, 34(Database issue):D140-144. 

21. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools 

for microRNA genomics. Nucleic Acids Res 2008, 36(Database 

issue):D154-158. 

22. Smyth GK, Yang YH, Speed T: Statistical issues in cDNA microarray 

data analysis. Methods Mol Biol 2003, 224:111-136. 

23. Smyth GK: Linear models and empirical bayes methods for assessing 

differential expression in microarray experiments. Stat Appl Genet Mol 

Biol 2004, 3:Article3. 

24. Vapnik V: The nature of statistical learning theory., 2nd edition edn. 

New York: Spinger; 2000. 

25. Vorwerk S, Ganter K, Cheng Y, Hoheisel J, Stahler PF, Beier M: 

Microfluidic-based enzymatic on-chip labeling of miRNAs. N 

Biotechnol 2008, 25(2-3):142-149. 



26. Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of 

normalization methods for high density oligonucleotide array data 

based on variance and bias. Bioinformatics 2003, 19(2):185-193. 

27. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I: Controlling the false 

discovery rate in behavior genetics research. Behav Brain Res 2001, 

125(1-2):279-284. 

28. Hochberg Y: A sharper bonferroni procedure for multiple tests of 

significance. Biometrica 1988, 75:185-193. 

29. Pearson K: On Lines and Planes of Closest Fit to Systems of Points in 

Space. Philosophical Magazine 1901, 2(6):559–572. 

30. Shaw P: Multivariate statistics for the Environmental Sciences. 

London: Hodder-Arnold.; 2003. 

31. Team R: R: A Language  and Environment for Statistical Computing. 

In. Vienna: R Foundation for Statistical Computing; 2008. 

32. McCarthy DJ, Smyth GK: Testing significance relative to a fold-change 

threshold is a TREAT. Bioinformatics 2009, 25(6):765-771. 

33. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q: An analysis of 

human microRNA and disease associations. PLoS One 2008, 

3(10):e3420. 

34. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, 

Stephens RM, Okamoto A, Yokota J, Tanaka T et al: Unique microRNA 

molecular profiles in lung cancer diagnosis and prognosis. Cancer 

Cell 2006, 9(3):189-198. 

35. Zhang Y, Li M, Wang H, Fisher WE, Lin PH, Yao Q, Chen C: Profiling of 

95 microRNAs in pancreatic cancer cell lines and surgical specimens 

by real-time PCR analysis. World J Surg 2009, 33(4):698-709. 



36. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, 

Liang S, Naylor TL, Barchetti A, Ward MR et al: microRNAs exhibit high 

frequency genomic alterations in human cancer. Proc Natl Acad Sci U 

S A 2006, 103(24):9136-9141. 

37. Sonkoly E, Stahle M, Pivarcsi A: MicroRNAs: novel regulators in skin 

inflammation. Clin Exp Dermatol 2008, 33(3):312-315. 

38. Dai Y, Sui W, Lan H, Yan Q, Huang H, Huang Y: Comprehensive 

analysis of microRNA expression patterns in renal biopsies of lupus 

nephritis patients. Rheumatol Int 2009, 29(7):749-754. 

39. Sonkoly E, Wei T, Janson PC, Saaf A, Lundeberg L, Tengvall-Linder M, 

Norstedt G, Alenius H, Homey B, Scheynius A et al: MicroRNAs: novel 

regulators involved in the pathogenesis of Psoriasis? PLoS One 

2007, 2(7):e610. 

40. Williams AE: Functional aspects of animal microRNAs. Cell Mol Life 

Sci 2008, 65(4):545-562. 

41. Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries 

N, Tak PP et al: MicroRNA-146A contributes to abnormal activation of 

the type I interferon pathway in human lupus by targeting the key 

signaling proteins. Arthritis Rheum 2009, 60(4):1065-1075. 

42. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo 

X et al: Characterization of microRNAs in serum: a novel class of 

biomarkers for diagnosis of cancer and other diseases. Cell Res 

2008, 18(10):997-1006. 

 

 

 



 

Figure Legends 

 

Figure 1: Venn-diagram for the comparison of three hypothesis tests 

 

Numbers of miRNAs that are differentially expressed in blood cells of melanoma 

patients as compared to healthy controls. The three-way venn-diagram indicates 

the numbers of miRNA identified as significant by t-test (blue circle), Wilcoxon 

Mann-Whitney test (green circle), and a linear model with p-values computed by 

an empirical bayes approach (limma, red circle). The numbers inside the 

intersections of circles denotes the number of miRNAs significant for two or three 

of the tests.  

 

Figure 2 : Comparison of melanoma test and validation set. 

Comparison of the miRNA expression in blood cells of melanoma patients in the 

test set and in the validation set. The logarithm of fold quotients of miRNAs was 

determined both for the 24 melanoma blood samples used as test set (x-axis) 

and for the 11 melanoma blood samples used as validation set (y-axis). The 

correlation of both fold quotients is 0.81.   

 

Figure 3: Cluster analysis of all analyzed blood samples. 

Cluster dendrogram of blood samples from healthy control subjects and from 

melanoma patients of the test and validation set. Cluster analysis was done for 

the 50 miRNAs with the highest data variance among all tested blood samples, 

i.e. samples of healthy controls  (C), samples of the melanoma test set  (M), and 



samples of the melanoma validation set (N). The healthy control subjects and the 

melanoma patients can be clearly differentiated.  

 

Figure 4: Principal Component Analysis of all tested blood samples. 

Principal Component Analysis of blood samples from healthy control subjects 

and from melanoma patients of the test and validation set. The figure shows the 

first (x-axis) versus the second (y-axis) principal component. Samples of healthy 

individuals are indicated by C, melanoma test samples by M, and melanoma 

validation samples by N. The healthy control subjects and the melanoma patients 

can be clearly differentiated.  

 

Figure 5: Classification results. 

Accuracy, specificity and sensitivity by which melanoma patients are identified 

based on miRNA profiling of blood.  Blue boxes show the classification accuracy, 

specificity and sensitivity as determined by repeated cross-validation for the 

subset of 16 miRNAs. Red boxes show the respective accuracy, specificity and 

sensitivity for permutation test. 

 

Figure 6: Classification example. 

Example for the classification of melanoma patients and healthy individuals 

based on the miRNA expression profiling of blood cells for the 16 miRNAs as 

detected by the subset selection. The logarithm of the quotient of the probability 

to be a melanoma patient and the probability to be a healthy individual is given 

on the y-axis for each control (C) and each melanoma (M). If this quotient is 

greater than one e.g. the logarithm is greater zero the sample is more likely to be 

a melanoma sample than a control sample. 



Tables 
 
Table 1: 51 significantly deregulated miRNAs sorted by their AUC value. 

miRNA 
median 
melanoma 

median 
normal 

fold 
change wmw adjp ttest adjp limma adjp AUC 

hsa-miR-452* 189.7 633.3 0.3 0 0.00046 0 0.99 
hsa-miR-216a 89.1 197.3 0.5 0.000001 1.7E-05 0.000039 0.98 
hsa-miR-186 206.5 26.2 7.9 0.000001 0 0 0.97 
hsa-let-7d* 178.6 37.7 4.7 0.000001 0 0 0.96 
hsa-miR-17* 433.5 941.8 0.5 0.000001 0 0 0.96 
hsa-miR-646 150.9 350.6 0.4 0.000001 0.00038 0 0.96 
hsa-miR-217 86.3 183.8 0.5 0.000001 0.00055 0.000003 0.96 
hsa-miR-621 178.6 486.7 0.4 0.000001 0.00011 0 0.95 
hsa-miR-517* 109.9 230.8 0.5 0.000001 0.00022 0 0.95 
hsa-miR-99a 217.3 85 2.6 0.000002 0 0 0.95 
hsa-miR-664 557 173 3.2 0.000002 0 0 0.94 
hsa-miR-593* 175.4 356.7 0.5 0.000002 0.00027 0 0.94 
hsa-miR-18a* 397.4 135 2.9 0.000002 0 0 0.94 
hsa-miR-145 358 94.6 3.8 0.000002 0 0 0.94 
hsa-miR-1280 6779.6 2676.2 2.5 0.000002 0 0 0.93 
hsa-let-7i* 122.8 281.4 0.4 0.000003 0.00045 0 0.93 
hsa-miR-422a 279.2 104.5 2.7 0.000004 0 0 0.92 
hsa-miR-330-3p 213.1 443.2 0.5 0.000004 0.00052 0 0.92 
hsa-miR-767-5p 107.1 232.4 0.5 0.000004 0.00022 0.000001 0.92 
hsa-miR-183* 195.9 87.7 2.2 0.000004 1E-06 0 0.92 
hsa-miR-1249 144.8 46.1 3.1 0.000004 0 0.000004 0.92 
hsa-miR-20b 2163.5 5665.8 0.4 0.000004 2E-06 0.000001 0.92 
hsa-miR-509-3-5p 157 371.4 0.4 0.000004 0.00046 0 0.92 
hsa-miR-519b-5p 72.5 155.1 0.5 0.000004 2.9E-05 0.000398 0.92 
hsa-miR-362-3p 449 167.8 2.7 0.000004 4E-06 0 0.92 
hsa-miR-501-5p 106.5 27.8 3.8 0.000004 0 0.000002 0.92 
hsa-miR-378* 103.7 29.4 3.5 0.000004 0 0.000002 0.92 
hsa-miR-365 160.5 65.1 2.5 0.000006 0 0.000001 0.91 
hsa-miR-151-3p 999 422.6 2.4 0.000006 1E-06 0 0.91 
hsa-miR-342-5p 196.8 92.1 2.1 0.000008 1E-06 0.000003 0.91 
hsa-miR-328 175.4 32.3 5.4 0.000008 0 0.000001 0.9 
hsa-miR-181a-2* 154.8 64.7 2.4 0.000016 4E-06 0.000004 0.89 
hsa-miR-518e* 88.1 196.4 0.4 0.000019 0.00045 0.000586 0.89 
hsa-miR-362-5p 245.4 119.5 2.1 0.000023 8E-06 0.000001 0.88 
hsa-miR-584 198.2 46.9 4.2 0.000023 1.5E-05 0.000008 0.88 
hsa-miR-550* 808.5 313.8 2.6 0.000024 2.6E-05 0.000003 0.88 
hsa-miR-30a 682.9 334.8 2 0.000027 4E-06 0.000002 0.88 
hsa-miR-221* 54.3 113.8 0.5 0.000029 0.00011 0.00039 0.88 
hsa-miR-361-3p 263.9 99 2.7 0.000033 2E-06 0.000003 0.88 
hsa-miR-625 185.8 63.3 2.9 0.000037 1.7E-05 0.000038 0.87 
hsa-miR-146a 326.8 161.8 2 0.000037 3.9E-05 0.000003 0.87 
hsa-miR-214 172.3 383.4 0.4 0.000042 0.00038 0.000001 0.87 
hsa-miR-106b 8639.8 18881 0.5 0.000044 8.5E-05 0.000019 0.87 
hsa-miR-18a 1060.8 2560 0.4 0.000053 0.00074 0.000013 0.86 
hsa-miR-30e* 101.7 47.8 2.1 0.000022 5E-06 0.000098 0.86 
hsa-miR-125a-5p 370.8 147.4 2.5 0.000059 3.3E-05 0.000001 0.86 
hsa-miR-142-3p 105.3 2 53 0.000082 1.7E-05 0.000009 0.85 
hsa-miR-107 725.8 1938.9 0.4 0.000092 0.00097 0.000034 0.85 
hsa-miR-20a 3254.3 7282.8 0.4 0.000134 0.00016 0.000062 0.84 
hsa-miR-22* 117.7 45 2.6 0.000193 3.7E-05 0.000138 0.83 
hsa-miR-199a-5p 551.4 267.9 2.1 0.000201 0.00066 0.000042 0.83 

adjp=adjusted p-value, AUC=area under the receiver operator charcteristic curve, wmw=, 
Wilcoxon Mann-Whitney test, limma= linear model with p-values computed by an empirical bayes 
approach 

 
 
 
 
 



Table 2: Comparison of the miRNA expression fold changes between the 
microarray and qRT-PCR results  
 

miRNA 
fold change 

qRT-PCR 
fold change 
microarray 

hsa-miR-106b 0.54 1.09 
hsa-miR-107 0.70 0.68 
hsa-miR-1280 1.15 3.01 
hsa-miR-151-3p 1.02 2.05 
hsa-miR-17* 0.59 0.60 
hsa-miR-18a 0.40 0.42 
hsa-miR-199a-5p 1.08 2.77 
hsa-miR-20a 0.41 0.58 
hsa-miR-20b 0.48 0.88 
hsa-miR-30a 0.78 1.14 
hsa-miR-362-3p 0.98 2.07 
hsa-miR-550* 0.65 1.02 
hsa-miR-664 0.65 0.83 

correlation 0.93 
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Additional Table S1: xls 

Detailed information on all blood donors, i.e. melanoma patients and healthy 

individuals. 
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