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ABSTRACT      

The DNA enzyme Dz13, targeted against the oncogene c-Jun, is capable of inhibiting 

various model tumours in mice albeit in ectopic models of neoplasia.  In previous studies 

using orthotopic models of disease, the inhibitory effects of Dz13 on secondary growth 

was a direct result of growth inhibition at the primary lesion site.  Thus, the direct and 

genuine effects on metastasis were not gauged.  In this study, Dz13 was able to inhibit 

both locoregional and distal metastasis of tumour cells in mice, in studies where the 

primary tumours were unaffected due to the late and clinically-mimicking nature of 

treatment commencement.  In addition, the effect of Dz13 against tumours has now been 

extended to encompass breast and prostate cancer.  Dz13 upregulated the matrix 

metalloproteinase (MMP)-2 and MMP-9, and decreased expression of MT1-MMP 

(MMP-14) in cultured tumour cells.  However, in sections of ectopic tumours treated with 

Dz13, both MMP-2 and MMP-9 were downregulated.  Thus, not only is Dz13 able to 

inhibit tumour growth at the primary site, but also able to decrease the ability of 

neoplastic cells to metastasise.  These findings further highlight the growing potential of 

Dz13 as an antineoplastic agent.   

 

INTRODUCTION     

Dz13 is a DNA enzyme designed originally to reduce intimal thickening in injured rat 

carotid arteries [1].  Since then, this particular ‘gene shear’ molecule has been shown to 

have potential therapeutic effects against a variety of disorders as mentioned below.  

DNAzymes are synthetic, single-stranded DNA-based catalysts engineered to bind to 

their complementary sequence in a target messenger RNA (mRNA) through Watson–
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Crick rules for base-pairing and cleave the mRNA at predetermined phosphodiester 

linkages (reviewed in [2]).  For example, Dz13 cleaves the target human c-Jun mRNA at 

position G
1311

[1].  By way of a handful of critical studies, these biocatalytic molecules 

have emerged as a potential new class of nucleic acid–based drugs because of several 

beneficial attributes [2].   

Dz13 has been shown in ectopic mouse tumour models to reduce the growth of 

melanoma indirectly via anti-angiogenesis [3], while exhibiting direct activity against 

squamous cell carcinoma [4], osteosarcoma, OS [5, 6] and liposarcoma [7].  In OS, this 

agent can be combined with a frontline drug such as doxorubicin for better efficacy [8], 

especially once it has been administered in a nanoencapsulated form [9].  While Dz13 has 

direct anti-tumour effects based on reduced cell growth and heightened cell death, the 

underlying mechanisms have not been elucidated.   

The proteolytic breakdown of proteins of the extracellular matrix (ECM) has long 

been recognized as a hallmark of invading primary cancer lesions [10].  Several classes of 

proteases contribute to ECM breakdown and remodeling, most of which are upregulated 

in the course of metastatic cancer progression in different types of cancers [11].  Matrix 

metalloproteinases (MMPs) constitute a family of zinc-dependent endopeptidases that 

have been studied in the past few decades in the context of cancer, and the consensus 

view at present is that the main role of MMPs in angiogenesis, tumour growth and 

metastasis is degradation of ECM and release and/or activation of growth factors through 

such activity.  Accordingly, inhibitors to MMPs have entered clinical testing, though the 

first clinical trials have led to disappointing results [12].   
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One of the critical proteases involved in cell migration is membrane-type 1 matrix 

metalloproteinase (MT1-MMP or MMP-14).  MT1-MMP degrades extracellular matrix 

to furnish a path for cells to migrate, sheds cell surface molecules (that can serve as 

migratory signals), and activates extracellular signal-regulated protein kinase (ERK), thus 

enhancing cell migration [13].  Expression of MT1-MMP and activation of MMP-2 

correlate with progression in human melanoma [14].  Relative risk of death in 

mesothelioma patients with low MT1-MMP expression is significantly lower than 

patients with high expression [15].  However, to date, the role of Dz13 against this MMP 

has not been evaluated.   

The activation of the 72kDa type IV collagenase proMMP-2 (gelatinase A) correlates 

with increased occurrence of metastases, and leads to a conversion of the 72kDa pro-

MMP species to a 63kDa zymogen, mediated by MT1-MMP activity at the cell surface 

[16].  In hepatic stellate cells, involved in liver healing, MT1-MMP activates MMP-13 

which in turn activates MMP-9 [17].  In non-small-cell lung carcinoma, significant 

association with poor survival by both MMP-2 and MMP-9 has been reported [18].  

Expression of MMP-2 and -9 is up-regulated in endometriomas and more pronounced in 

advanced stage disease [19].  In gastric cancer, expression of MMP-2 is strongly 

associated with tumour progression and lymph node metastasis [20].       

Cleavage of the 92kDa type IV collagenase proMMP-9 (gelatinase B) results in its 

activated form, an 82kDa protein that has been reported to enhance the invasive 

phenotype of cultured MDA-MB231 cells due to increased capacity of degradation of 

ECM and transversing basement membrane following activation [21].  In epithelial 

ovarian cancer, overexpression of stromal MMP-9 and MT1-MMP is independently 



 

 5

associated with negative prognosis [22].  High-grade prostate tumours are more likely to 

express MMP-9 [23].  In uroepithelial carcinoma patients, increased pro-MMP-9 and 

active MMP-2 levels correlate with disease progression [24].     

Thus, this study demonstrates that Dz13 can downregulate MMP-2, MMP-9 and 

MMP-14 levels in tumour cells, in addition to downregulating its target gene c-Jun, with 

no effect on the AP-1 transcription factor component (and associate of c-Jun), c-Fos.  

Moreover, this study seminally demonstrates the direct antimetastatic ability of Dz13 in 

models of tumour progression.   

 

MATERIALS AND METHODS     

Cells     

The human prostate cancer PC3, breast cancer MDA-MB231, osteosarcoma SaOS-2, and 

osteosarcoma 143B cell lines were from the ATCC (Virginia, USA), while the 

osteosarcoma G292 cell line was from D. Thomas (Peter MacCallum Cancer Institute, 

Melbourne, Australia).  Cells were propagated in α-MEM supplemented with 10% FBS 

and 1% antibiotic-antimycotic (complete medium). Cell lines were maintained up to 20 

passages in a 37
o
C/5% CO2 incubator, and were ensured to be >95% viable. 

 

DNAzyme transfection    

The 34mer, 10-23 class of deoxyribozymes, Dz13 and Scr (the scrambled sequence 

control for Dz13) oligonucleotides were synthesised and prepared according to 

established conditions [25].  DNAzyme (0.8µM) was transfected with Fugene-6 

liposomes (Roche Diagnostics, Sydney, Australia) in complete medium.   
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Western blotting     

Treated cell lysates were immunoblotted as per a published method [26].  Briefly, post-

transfection, cells were gently lysed with RIPA (150mM NaCl, 50mM Tris, 1mM EDTA, 

0.1% SDS, 1% Triton X-100 pH 7.4) buffer containing complete protease inhibitors 

(Roche Diagnostics).  All primary antibodies were from Santa Cruz Biotechnology (Santa 

Cruz, CA, USA), and all horseradish peroxidise (HRP)-conjugated secondary antibodies 

were from Dako.    

  

Immunohistochemistry (IHC)       

IHC was performed as before [27] on paraformaldehyde-fixed paraffin-embedded tumour 

specimens.  5µm sections were deparaffinised in xylene, then rehydrated in a graded 

ethanol series.  High pH (9.5) 10mM Tris/1mM EDTA buffer at 95
o
C was used for 

antigen retrieval.  All primary antibodies were from Santa Cruz Biotechnology and were 

incubated overnight at 4
o
C.  Secondary biotinylated antibodies (Dako, Sydney, Australia) 

were incubated with specimens at room temperature for 1h.   

   

Establishment of metastasising 143B tumour model    

Prior approval for all animal experimentation was obtained from the St. Vincent’s Health 

Animal Ethics Committee.  Female 5-week-old Balb/c nude mice (n = 3, sourced from 

the Animal Resources Centre, Perth, Australia) were anaesthetised with ketamine 

(100mg/kg) and xylazine (10mg/kg).  2.5x10
5
 143B tumor cells in 50% Matrigel (BD 

Biosciences, Sydney, Australia) were injected into the inguinal fatpad of 5-week-old 
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female Balb/c nude mice.  At the end of the study, the peritoneal cavity was checked for 

local metastases and the liver and lungs for distal metastases, photographs were taken, 

and tissues were processed histologically.   

   

Proof of anti-metastatic activity of Dz13 against novel 143B tumour model   

As above, 143B tumor cells in 50% Matrigel were injected into the inguinal fatpad of 

mice.  Dz13 or Scr (250ng) in saline was administered intraperitoneally 6 weeks later 

when tumours became palpable.  Four weeks later, primary tumours were weighed, and 

local and lung macrometastases were counted.  The peritoneal cavity was checked for 

local metastases and the lungs for distal metastases, and tumours processed histologically.   

 

Test of Dz13 against metastasis of cancer cells from an orthotopic tumour    

Female 5-week-old Balb/c nude mice (n = 4 per group) were anaesthetised with ketamine 

(100mg/kg) and xylazine (10mg/kg).  2x10
4
 SaOS-2 tumour cells in 50% Matrigel was 

injected intratibially in a volume of 20µL in the proximal tibia using a 26G needle and a 

gentle ‘screwing’ motion to prevent bone cortex rupture a before [28].  The general 

condition of all mice were observed before the tumours were measured apically (AP) and 

longitudinally (L) with digital callipers. Taking into consideration tumour bulge, AP was 

measured left-to-right across the knee-cap and L was an anterior-to-posterior 

measurement of the tibia (all measurements obtained where the tumour growth was 

maximal). Tibial tumour volume was calculated using the formula: 4/3π [0.25(AP+L)]
2
 

[29].  A lung lobe of 3 representative mice from each treatment group was processed 
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histologically [30] and sectioned at 5µm at every 100µm interval.  The number of 

micrometastases in each section was then counted for each cohort and summed.    

 

Proof-of-principle Dz13 activity studies against ectopic tumors     

Prior approval for use of mice was obtained from the St. Vincent’s Health Animal Ethics 

Committee.  Female 5-week-old Balb/c nude mice (n = 5 per group) were anaesthetised 

with ketamine (100mg/kg) and xylazine (10mg/kg).  Dz13 was mixed with PC3, MDA-

MB231 or SJSA-1 tumour cells (1x10
6
) at a concentration of 0.4µM in 50% Matrigel 

(BD Biosciences) prior to ectopic injection subcutaneously in the midback of 5 week-old 

Balb/C nu/nu mice.  Backflow of the injectate was prevented by retracting the needle 

post-injection slowly from the injection site.  Mice were fed and hydrated ad libitum and 

monitored twice weekly for tumour development, and then three times weekly when 

tumours were palpable.  Tumour volumes were measured and tumours histologically 

processed as per published method [31, 32].       

 

Statistical analysis    

All data were analysed using the one-way student’s t-test with unequal variances.   

  

RESULTS    

 

Locally and distally metastasising osteosarcoma model   

In this study, when 143B cells were injected into the fatpad, palpable tumours arose at 3 

weeks post-injection (Fig. 1a).  At this early stage, tumours were almost white in colour 
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with a maximal dimension of 5mm across (Fig. 1b).  Clearly discernible tumours 

appeared around 4 weeks (Fig. 1c).  At the 6-week stage, tumours were approximately 

1cm x 1cm in length and width dimensions, with a healthy pink hue and easily delineated 

vessels indicating aggressive tumour growth (Fig. 1d).  At this point, several 

macrometastases were noted in the visceral walls surrounding peritoneal organs, 

including the intestines (Fig. 1e).  Some of these locoregional growths were at least 1cm 

away from the parent tumour (Fig. 1f).  Evidence of macrometastases was noted on the 

surface of lungs, though these were almost pin-point size.  Confirmation with histology 

revealed that 143B cells did travel to and establish in the lungs from the peritoneum (Fig. 

1g).   

 

Dz13 directly inhibits local as well as distal tumour metastasis    

The novel 143B model was then applied to directly test the effects of Dz13 against 

metastasis.  Dz13 was administered 6 weeks after 143B cells were injected to ensure that 

primary tumours were unaffected (Fig. 2a) but an effect on metastasis could nevertheless 

be monitored.  To this end, both local metastases in the peritoneal cavity and walls (Fig. 

2b) and distal metastases to the lungs (Fig. 2c) were reduced.  Thus, efficacy of Dz13 

against metastasis was readily observed.  The Scr control did not affect either primary 

tumour or metastasis.  In addition, effects of Dz13 were tested on OS metastasis from the 

bone, this time with the established SaOS-2 tumour model [28].  Tumours were allowed 

to grow to around 1cm in both the AP and L dimensions, before Dz13 was administered 

intravenously in bolus dosages.  Lung surface macrometastases were reduced in the Dz13 

cohort of mice (Fig. 3a), and so were lung micrometastases (Fig. 3b).  Histological 
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examination of lung lobe sections revealed that both size and number of micrometastases 

were reduced when animals were administered Dz13, but not Scr oligonucleotide (Fig. 

3c).  Tumour measurements at the tibiae of mice shows equal mean lesion volumes across 

the treatment groups (Fig. 3d).   

 

Dz13 alters matrix metalloproteinase levels in tumour cells   

Having demonstrated that Dz13 can directly inhibit tumour metastasis, the underlying 

molecular mechanisms were examined.  Since MMP-2 and MMP-9 have been associated 

with c-Jun regulation [3, 4], these agents of ECM breakdown were explored.  In addition, 

MT1-MMP (MMP-14) was also evaluated.  Lysates for Dz13- and Scr-treated human 

osteosarcoma SJSA-1 cells were immunoblotted.  Levels of activated MMP-2 increased 

initially, but then decreased after 1h post-transfection with Dz13 (Fig. 4).  Interestingly, 

MMP-9 was activated as time progressed post-transfection of cells with Dz13.  However, 

for MT1-MMP, levels consistently decreased as the assay progressed.   

 

Dz13 reduces ectopic osteosarcoma, prostate and breast tumour growths    

Ectopic osteosarcoma (G292), prostate (PC3) and breast (MDA-MB231) tumour growths 

were reduced by Dz13 (Fig. 5).  A statistical difference in tumour volume was noted at 

day 32 post-injection of cells, and at the end of the study (day 35), Dz13-treated tumour 

growths were clearly stunted.  Less aggressive growth was noted with Dz13 treatment as 

manifested by sparse growth of tumour cells within the lesion (Fig. 6), which in itself was 

small and close to the underlying muscle.  The Scr control tumours were the same 

volumes as the untreated tumours.    
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Dz13 downregulates target c-Jun and MMP levels in ectopic tumours   

Ectopic osteosarcoma (G292), prostate (PC3) and breast (MDA-MB231) tumour sections 

were evaluated by immunohistochemistry for c-Jun and c-Fos (off-target control).  c-Jun 

levels were decreased in all tumours, but c-Fos was not (Fig. 7).  Likewise, MMP-2 

levels were slightly lower in Dz13-treated tumours (Fig. 8).  Immunohistochemistry for 

MMP-9 revealed a clear downregulation of this MMP as a result of Dz13 treatment of 

tumours (Fig. 9).  Akin to results in vitro, levels of MT1-MMP were reduced in all 

tumours in vivo (Fig. 10).      

 

DISCUSSION       

In the future, Dz13 may be a feasible approach to tumour management.  Metastasis is 

the event in tumorigenesis that signals advanced stage disease, and one that is 

unfortunately frequently not amenable to medical intervention.  As such, agents capable 

of reducing the impact of metastasis are likely to significantly alter the current 

management strategies for cancers.  This is surely the case for OS [33], where with good 

management strategies, the 10-year disease-free survival is about 60% in patients with 

localised disease and 30% in patients with metastatic disease at diagnosis.    

c-Jun, in the form of the AP-I complex, regulates MMP-9 levels in mammalian cells 

[34].  This oncoprotein is also known to regulate expression of MMP-2 [35, 36].  In fact, 

in OS cells, c-Jun has been linked to both MMP-2 and MMP-9 activities and to cell 

ability to invade [37].  c-Jun also regulates MT1-MMP levels in mammalian cells [38].  

As mentioned above, it has been previously demonstrated that Dz13, which 
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downregulates c-Jun, can in fact regulate MMP-2 expression and subsequent activity in 

endothelial cells [3] and MMP-2 and -9 in squamous cell carcinoma cells [4].   

Thus, here we extend Dz13 action on MMPs, specifically showing that MT1-MMP is 

downregulated when OS cells are treated with Dz13, a novel finding since MT1-MMP 

was not evaluated in previous Dz13 studies [3, 4].  However, in discordance with 

previous findings, our studies show that Dz13 firstly upregulates MMP-2 in cultured OS 

cells, and levels decrease to baseline (undetectable) at later time-points.  In addition, 

another variant from previous findings was the increasing MMP-9 activation in cells 

treated with Dz13 as time progressed.  One explanation is that these findings could be 

due to the link that both MMP-2 and MMP-9 have with apoptosis [39], which is known to 

commonly occur with Dz13 treatment of tumour cells [40].       

This study is also novel in that it seminally proved the direct effect of Dz13 on tumour 

metastasis.  To test whether Dz13 can directly inhibit tumour metastasis, rather than as a 

result of primary tumour inhibition as demonstrated before [5-8], a locally metastasising 

model was established.  143B cells were injected into the inguinal fatpad of mice, at a 

region which facilitates easy manipulation of the mice (drug administration and hence 

testing without anaesthesia of animals, site at which animal cannot physically affect 

tumour growth with limbs or snout, tumour measurements can be obtained without need 

for animal immobilisation, and cells are secured in a specified spot within fatpad and not 

floating around in peritoneum).  OS does in fact metastasise to the peritoneum in patients, 

albeit from organs other than bone [41, 42].  One advantage of this model over other OS 

models using human cells [28, 43] is the presence of both regional and distal metastases 

in the peritoneum and surrounding walls and the lungs respectively.  This model can be 
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used for testing of the antimetastatic properties of candidate therapeutic agents against 

OS due to the aforementioned advantages.     

In both the 143B fatpad model and in an orthotopic model for OS, where cells are 

injected directly into bone [28], primary tumours were left to grow until a stage where 

treatment would have no effect on the primary lesion.  When Dz13 was then used, the 

development of metastases was significantly inhibited in both models.  The Scr control 

oligonucleotide had no effect on tumours.   

While MMPs levels were perturbed in cultured cells, the effects of Dz13 in vivo 

needed to be tested in a panel of tumour types.  The tumours evaluated consisted of 

prostate, breast and osteosarcoma, though ectopic models were used to examine protein 

levels via tumour section immunohistochemistry (IHC).  When IHC was performed, a 

consistent decrease in MMP-2 and MMP-9 levels was noted in the Dz13 cohort of 

animals compared to both the saline-treated and Scr-treated tumours.  Thus, while in vitro 

results suggest that MMP levels may fluctuate and even increase via activation, in vivo 

results showed a consistent decrease in MMPs by Dz13.  The discrepancy could be due to 

the fact that in culture, cells were exposed to a very potent Dz13 onslaught in a 2-D 

configuration, while in vivo, cells were protected by the Matrigel and the 3-D nature of 

the injected ‘colony’ of cells, and treatment was protracted over 5 weeks.  However, what 

was consistent was the finding that both in vitro and in vivo, levels of MT1-MMP were 

reduced in tumour cells treated with Dz13 but not the scrambled control.   

In addition, in vivo, significant decrease in c-Jun levels were noted for all ectopic 

tumours treated with Dz13 but not when cells were treated with the Scr control 

oligonucleotide.  In vitro, cells have to be serum-starved prior to growth induction (and c-
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Jun elevation) before Dz13 shows it effects [1, 3, 4], but in vivo, where such a protocol is 

irrelevant, except in areas of the tumour where new blood supply has been established 

after a certain degree of ischaemia, Dz13 is active against its target mRNA, the c-Jun 

oncogene.  No changes in c-Fos levels were noted.  Thus, for DNAzyme technology in 

general, the need for serum-starvation in culture [31, 32], while providing critical proof 

that the catalytic nucleic acid is active against its target, may fail to be indicative of what 

occurs in vivo, and in fact is an underestimation of the potent action of Dz13 against its 

target.    

For Dz13, the present set of results further highlight the inherent potential of this 

molecule.  Not only is it able to control tumour at the primary site, but also at the 

secondary site as well.  As for other tumours, and particularly in OS, while the primary 

tumour may be removed in a good number of cases, it is the metastases which become 

life-threatening [44].  Further studies with other metastasising tumours may prove the 

widespread beneficial effects of Dz13.   
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CAPTIONS TO FIGURES     

 

 Figure 1.   Characterisation of the 143B locally metastasising model. This model can be 

used for testing of the antimetastatic properties of candidate therapeutic agents against 

osteosarcoma. 143B cells were injected into the inguinal fatpad of mice. A, palpable 

tumour at 2 weeks post-injection, B, exposed tumour at 2 weeks post-injection, C, clearly 

discernible tumour at 4 weeks, D, exposed tumour at 4 weeks, E, white arrowhead 

indicates site of primary tumour, black arrowhead indicates site of secondary 

locoregional tumour, F, arrowhead, site of locoregional tumour metastasis, G, 

arrowhead, pulmonary metastasis within lung parenchyma. Scale bar = 25µm.   

 

Figure 2.   Dz13 inhibits 143B tumour metastasis.  Dz13 was tested in the novel 

intraperitoneal 143B model.  (A) Primary tumours were unaffected.  (B) Dz13 inhibits 
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tumour metastasis locally in the peritoneum.  (C) Dz13 inhibits tumour metastases to a 

distal site (lung).  n = 5, error bars represent standard deviations.     

 

Figure 3.   Dz13 inhibits OS metastasis from the bone efficaciously.  Dz13 efficacy was 

next tested in the SaOS-2 orthotopic model.  Dz13 was able to reduce OS metastasis to 

the lung after treatment was administered when tumours were palpable.  Both 

macrometastasis (A) and micrometastasis (B) counts were reduced in the Dz13 cohort.  

(C) Histology confirmed that there were less micrometastases in lungs of mice in the 

Dz13 cohort (middle) compared to untreated (top) and Scr-treated (bottom).  (D) Primary 

tumour was not affected by the treatments administered.   

 

Figure 4.   Dz13 downregulated matrix metalloproteinases in tumour cells.  Two 

osteosarcoma cell lines were transfected with Dz13 and cell lysates harvested at the 

indicated time-points.  Lysates were immunoblotted for the MMP-2, -9 and -14 (MT1-

MMP).  GAPDH indicates equivalent loading between samples.   

 

Figure 5.   Dz13 reduces volume of ectopic (subcutaneous) osteosarcoma, prostate and 

breast tumour growths.  Ectopic osteosarcoma (G292), prostate (PC3) and breast (MDA-

MB231) tumour growths were reduced by Dz13.  Real-time tumour growth graphs are 

presented.  Inserts show photographs of harvested representative tumours from the 

cohorts for each cell line.  n = 5, error bars represent standard deviations.     
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Figure 6.   Dz13 reduces aggressiveness of ectopic osteosarcoma, prostate and breast 

tumour growths.  Haematoxylin- and eosin-stained osteosarcoma (G292), prostate (PC3) 

and breast (MDA-MB231) tumour sections are shown.  In the Dz13 cohorts, less 

aggressive tumour growth is noted as sparse cell density and smaller area of occupation. 

Arrowheads: black, areas of dense cell growth, white, areas of sparse cell growth. Scr, 

scrambled sequence oligonucleotide of Dz13. Scale bar = 25µm.  Representative images 

are shown.  Scale bar = 25µm, n = 5.   

 

Figure 7.   Dz13 downregulates target c-Jun levels in ectopic osteosarcoma, prostate and 

breast tumours.  Ectopic osteosarcoma (G292), prostate (PC3) and breast (MDA-MB231) 

tumour sections were evaluated by immunohistochemistry for c-Jun and c-Fos (off-target 

control).  c-Jun and c-Fos (inserts)-immunostained tumour sections are shown.  

Representative images are shown.  Negative control sections (no primary antibody) ruled 

out non-specific staining.  Scale bar = 25µm, n = 5.   

 

Figure 8.  Dz13 downregulates MMP-2 in ectopic osteosarcoma, prostate and breast 

tumours.  Ectopic osteosarcoma (G292), prostate (PC3) and breast (MDA-MB231) 

tumour sections were evaluated by immunohistochemistry for MMP-2.  Representative 

images are shown.  Negative control sections (no primary antibody) ruled out non-

specific staining.  Scale bar = 25µm, n = 5.  

 

Figure 9.  Dz13 downregulates MMP-9 in ectopic osteosarcoma, prostate and breast 

tumours.  Ectopic osteosarcoma (G292), prostate (PC3) and breast (MDA-MB231) 
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tumour sections were evaluated by immunohistochemistry for MMP-9.  Representative 

images are shown.  Negative control sections (no primary antibody) ruled out non-

specific staining.  Scale bar = 25µm, n = 5.  

 

Figure 10.  Dz13 downregulates MT1-MMP in ectopic osteosarcoma, prostate and breast 

tumours.  Ectopic osteosarcoma (G292), prostate (PC3) and breast (MDA-MB231) 

tumour sections were evaluated by immunohistochemistry for MT1-MMP.  

Representative images are shown.  Negative control sections (no primary antibody) ruled 

out non-specific staining.  Scale bar = 12.5µm, n = 5.  
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