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ABSTRACT 

Background: Continuous complete clinical remission in T-cell acute lymphoblastic leukemia (T-ALL) is 

now approaching 80% due to the implementation of aggressive chemotherapy protocols but patients that 

relapse continue to have a poor prognosis. Such patients could benefit from augmented therapy if their 

clinical outcome could be more accurately predicted at the time of diagnosis. Gene expression profiling 

offers the potential to identify additional prognostic markers but has had limited success in generating robust 

signatures that predict outcome across multiple patient cohorts. This study aimed to identify robust gene 

classifiers that could be used for the accurate prediction of relapse in independent cohorts and across 

different experimental platforms. 

 

Results: Using HG-U133Plus2 microarrays we modeled a five-gene classifier (5-GC) that accurately 

predicted clinical outcome in a cohort of 50 T-ALL patients. The 5-GC was further tested against three 

independent cohorts of T-ALL patients, using either qRT-PCR or microarray gene expression, and could 

predict patients with significantly adverse clinical outcome in each. The 5-GC featured the interleukin-7 

receptor (IL-7R), low-expression of which was independently predictive of relapse in T-ALL patients. In T-

ALL cell lines, low IL-7R expression was correlated with diminished growth response to IL-7 and enhanced 

glucocorticoid resistance. Analysis of biological pathways identified the NF-κB and Wnt pathways, and the 

cell adhesion receptor family (particularly integrins) as being predictive of relapse. Outcome modeling using 

genes from these pathways identified patients with significantly worse relapse-free survival in each T-ALL 

cohort. 

 

Conclusions: We have used two different approaches to identify, for the first time, robust gene signatures 

that can successfully discriminate relapse and CCR patients at the time of diagnosis across multiple patient 

cohorts and platforms. Such genes and pathways represent markers for improved patient risk stratification 

and potential targets for novel T-ALL therapies.  
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BACKGROUND 

T-cell acute lymphoblastic leukemia (T-ALL) affects approximately 15% of newly diagnosed pediatric ALL 

patients. Continuous complete clinical remission (CCR) in T-ALL patients is now approaching 80% due to 

the implementation of aggressive chemotherapy protocols[1-6]. However, patients that relapse (R) have poor 

prognosis and aggressive therapy can lead to long-term side effects in those that achieve CCR[7]. In the 

clinical setting, age and white blood cell count (WBC) at diagnosis are used to stratify B-lineage ALL 

patients as either standard or high risk, significantly impacting on the type and intensity of post-induction 

therapy used.  However these NCI-defined criteria have been shown to have little prognostic value in T-ALL 

disease[1-3]. Improved markers are needed for outcome prediction to improve T-ALL patient stratification.  

 Common karyotypic abnormalities have been identified in some forms of leukemia and have proven 

useful for outcome prediction[8-12]. In precursor B-lineage ALL (pre-B ALL), the presence of 

hyperdiploidy or translocations such as E2A-PBX1, BCR-ABL, or ETV6-RUNX1 contribute to the severity of 

disease and response to chemotherapy[8, 9]. In T-ALL, increased expression of TLX1/HOX11 has been 

associated with favorable outcome[10, 11, 13, 14], whilst aberrant expression of TAL1, LYL1 and TLX3 and 

deletions at 6q15-16.1 have been linked to poor prognosis [11, 15, 16]. Recent work by Coustan-Smith and 

colleagues[17] has led to the identification of a new very high risk subset of T-ALL (early T-cell precursor 

leukemia) that has a distinct expression profile and immunophenotype. However, due to the lack of 

consensus between studies and the small proportion of T-ALL patients that carry these genetic or molecular 

aberrations, the identification of a universal molecular signature has become a priority.  Several studies have 

attempted to identify gene signatures that predict induction failure and/or relapse in T-ALL[8, 18, 19], but 

have had limited success verifying their findings in other patient cohorts. The current study aimed to identify 

robust gene signatures that could be used for the accurate prediction of relapse at the time of diagnosis, in 

independent patient cohorts, and across different experimental platforms. 

 

MATERIALS AND METHODS 

Patients 

The study cohort comprised 84 T-ALL patients treated on Children’s Oncology Group (CCG/COG) 

protocols (1882 - 1961) for high risk ALL[4]. Bone marrow specimens were obtained at diagnosis from 

patients at the Princess Margaret Hospital, Perth, Australia (n = 8) or COG (n = 76). Ethical approval was 
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obtained from the Institutional Review Boards, and informed consent for the use of tissues was obtained for 

all individuals. These specimens were assigned to either Training (n = 50) or Validation (n = 34) Cohorts, 

based on amount of material available for microarray and/or quantitative RT-PCR (qRT-PCR) experiments. 

Clinical features of these cohorts are shown in Table 1. All patients achieved remission following induction 

therapy; those patients achieving complete continuous remission (CCR) had median follow-up times of 7.3 

years (Training Cohort) and 8.8 years from diagnosis (Validation Cohort). 44% of the patients in the 

Training Cohort and 27% in the Validation Cohort subsequently relapsed (R). 

 

Gene expression profiling 

RNA from the T-ALL Training Cohort (n=50) was extracted from bone marrow specimens and hybridized to 

HG-U133Plus 2.0 GeneChips (54,675 probe sets; Affymetrix, Santa Clara, CA, USA) according to 

Affymetrix protocols. Gene expression data were extracted and normalized using robust multi-array analysis 

(RMA)[20] as previously described[21-23]. Expression data from the two Winter et al cohorts (microarray 

CEL files and patient details) were obtained from the authors[19] and normalized by RMA. Induction failure 

cases were removed prior to analysis, resulting in cohort sizes of 44 patients for Pediatric Oncology Group 

(POG/COG) Protocol 9404 (30 CCR, 14R, measured on HG-U133 Plus 2.0 arrays) and 41 patients for POG 

8704 (24CCR, 17R, measured on HG-U133A arrays). The modeling approaches used to develop gene-

classifiers (GCs) from microarray data is described in the results section. For outcome prediction using the 

obtained GCs, logistic regression was used to model probability of relapse for each specimen based on gene 

expression scores (microarray data or qRT-PCR data as relevant). This probability was used as a continuous 

variable in Cox proportional hazard regression analysis, and converted into a prediction of CCR/relapse 

labels using a probability cut-off point of 50%, generating model accuracies, sensitivity, specificity, positive 

predictive values (PPV, the proportion of patients among those predicted to relapse that actually relapsed) 

and negative predictive values (NPV, the proportion of patients among those predicted as non-relapse that 

actually achieved CCR). This stratification was also used for Kaplan-Meier survival analysis, with 

significance determined by log-rank test. 

 

Real-time quantitative RT-PCR (qRT-PCR) 

qRT-PCR was performed using TaqMan Gene Expression Assays (Applied Biosystems, Foster City, CA, 



5 

USA) as previously described[21]. Reactions were performed in duplicate and run on an ABI Prism 7000 

sequence detector (Applied Biosystems). The ACTB gene was used for normalization and standard curves 

were utilized for the quantitation of target gene expression.  

 

Effect of IL7 on cell growth and drug sensitivity 

The features of the T-ALL cell lines and culture conditions used in this study have previously been 

described[24, 25]. RNA for qRT-PCR was extracted from cell lines in log-phase growth. Surface expression 

of IL-7Rα (CD127) was assessed using PE-conjugated anti-human monoclonal IL-7Rα antibody 

(Immunotech, Marseilles, France) and an LSR II flow cytometer (BD Biosciences). The 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay was used to determine growth 

responses to human recombinant IL-7 (R&D Systems, Minneapolis, MN) according to our published 

methods[24]. 

 

RESULTS 

Modeling a multi-gene classifier for outcome prediction 

Using the decision-tree based algorithm Random Forest (RF) as previously described[23, 26], we ranked the 

54,675 probe sets on the HG-U133 Plus 2.0 GeneChip for their ability to distinguish the 22 R and 28 CCR 

patients from the Training Cohort. Starting with the top-ranked 500 probes from this RF analysis we firstly 

filtered out probe sets derived from the HG-U133B predecessor GeneChip (which largely target expressed 

sequence tags and non-confirmed gene content), then applied a previously developed algorithm to identify 

genes with a high probability of detection by qRT-PCR[21]. This shortlist of 57 probe sets (Table S1, 

Additional file 1) was then used to model the optimal combination of 5 genes (5 gene classifier, 5-GC) for 

outcome prediction in the Training Cohort. We sought a small classifier of this size to facilitate its translation 

into clinical laboratories for routine testing at diagnosis. Principle Component Analysis (PCA) was used to 

rank gene combinations, based on the ability of the 1
st
 principal component to explain the variability between 

R and CCR patient specimens (r
2
). BLAST searches were performed to confirm that probe sequences were 

specific for the annotated gene specified, and TaqMan probes for corresponding sequences were identified. 

Logistic regression was used to assess the accuracy of R/CCR status prediction for each 5-GC. In this way 

we identified a 5-GC that could predict R/CCR outcome in patients from the Training Cohort (n=50) with an 
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overall accuracy of 82% (model performance, p<0.0001; Fisher’s Exact Test). These genes were ABTB2, 

IL7R, LGALS8, PLAC8, and FAM13A1 (Table 2). Kaplan-Meier analysis demonstrated that patients labeled 

as R and CCR using gene expression scores of the 5-GC had significantly different relapse-free survival 

times (Figure 1A, p<0.0001). Cox proportional regression analysis of age, WBC, gender and 5-GC score 

demonstrated that the 5-GC score was the most significant factor related to outcome (p<0.0001, Table 3). 

The fact that age, WBC and gender were not significantly associated with outcome in the present study is a 

reflection of the size of the cohort involved and emphasizes the need for additional prognostic markers. 

Expression of the 5-GC was also measured by qRT-PCR in 40 specimens from the Training Cohort for 

which sufficient material was available. Table 2 summarizes the expression levels and R/CCR fold-changes 

for the identified genes, measured by both microarray and qRT-PCR. The recorded fold-changes were 

comparable between microarray and qRT-PCR data and the data correlated significantly between the two 

techniques (p<0.001) for all genes (Pearson’s correlation, log2 values). 

 

Validation of the 5-GC in an independent cohort 

We subsequently determined the expression levels of the genes in the 5-GC by qRT-PCR in diagnostic bone 

marrow specimens from 34 pediatric T-ALL patients from a completely independent Validation Cohort. 

Most of these patients were treated on COG 1882 or 1901, while the patients in the Training Cohort were 

treated on COG 1961[4]. In the Validation Cohort the 5-GC yielded an overall prediction accuracy of 79% 

(Table 4). Whilst model-performance was borderline by Fisher’s Exact Test (p=0.064, Table 4), Kaplan-

Meier analysis demonstrated significant differences in relapse-free survival (Figure 1B, p<0.0001). Although 

there was low sensitivity with only 2/9 relapsing patients successfully identified, PPV and specificity were 

100%, meaning that no patients were incorrectly identified as relapsers. Cox proportional regression analysis 

confirmed the 5-GC score to be a significant factor related to outcome in this cohort (p<0.05, Table S2, 

Additional file 1).  

 

In silico verification across multiple platforms and studies 

A number of other studies have attempted to find outcome predictors in pediatric T-ALL using gene 

expression at the time of diagnosis. Yeoh, et al[8] identified seven genes (UQCRFS1, SMA5, PRPSAP2, 

NCAPD3, TXBAS1, HMRPH2 and CD44) as being differentially expressed between R and CCR in a cohort 
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of 37 T-ALL patients using U95Av2 arrays. Our own group has previously identified three genes, CFLAR, 

NOTCH2 and BTG3, as prognostic markers in a smaller study of 12 T-ALL patients using HG-U133A 

arrays[18]. None of these previously identified prognostic markers featured in the top list of informative 

genes from the present study. In a different approach, Ferrando and colleagues[11] have demonstrated the 

predictive value of molecular signatures linked to oncogene expression (TLX1, TAL1, LYL1, LMO1, and 

LMO2) in T-ALL. However, the expression of these individual oncogenes did not significantly predict 

outcome in the present study. These observations demonstrate the difficulty of developing gene-based 

classifiers that can predict outcome across multiple platforms and patient cohorts. 

In a recently published article, Winter et al[19] used HG-U133-Plus 2.0 GeneChips in pediatric T-

ALL patients with the aim of identifying a gene signature in diagnosis specimens that could be linked to 

relapse or induction failure. The study comprised a cohort of 50 patients treated on therapy protocol COG 

9404 and a cohort of 42 patients treated on POG 8704, but was unable to identify a gene signature to 

distinguish R from CCR cases. However, a gene signature linked to induction failure was identified. 

Comparison of this induction failure signature with our 500 top-ranked genes in the present study indicated 

just one gene in common, hexokinase II, which ranked #101 in the Winter et al gene list and #65 in our list 

and was upregulated in patients that went on to relapse. This gene is of interest because of its role in 

coordinating metabolic and apoptotic pathways at the mitochondrial membrane, and its reported association 

with glucocorticoid resistance in T-ALL[25]. To verify our own gene classifier in the two cohorts studied by 

Winter et al, we downloaded the array data from their study, removed the induction failure cases, and 

applied the 5-GC in logistic regression to predict R/CCR status in the remaining patients. The 5-GC 

predicted patient outcome with an overall accuracy of 75% in the COG 9404 cohort, and 68% in the POG 

8704 cohort (Table 4). Importantly, patients predicted to relapse by the 5-GC had significantly worse 

survival rates in both cohorts (p<0.05 for both, Figure 1C & 1D). The weighted averages for the model 

performance across the four cohorts are summarized in Table 4 along with a combined p-value (generated by 

global assessment of performance accuracies in each independent cohort). Whilst the p-values for model 

performance were borderline in the three test-back cohorts individually, the consistent performance over all 

four cohorts was highly significant (p<0.0001, Table 4). This combined analysis remained highly significant 

when the results from the original Training Cohort were excluded (p<0.0005). Taken together these data 

indicate that the 5-GC has prognostic relevance across four independent T-ALL patient cohorts.  
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Functional relevance of the IL-7R as a prognostic marker 

Of the genes identified as part of the 5-GC, the IL-7R is of particular relevance to T-ALL since IL-7 is 

known to be a key regulator of T-cell development[27]. Kaplan-Meier analysis in the Training Cohort 

demonstrated that low expression of the IL-7R, as a single variable, was significantly predictive of adverse 

outcome (p<0.001, Figure 2A). To assess the functional significance of variations in IL-7R expression, we 

studied seven T-ALL cell lines[24], assessing IL-7R mRNA expression by qRT-PCR (Figure 2B) and cell 

surface expression by flow cytometry (Figure 2C). A significant correlation was demonstrated between 

mRNA and protein expression in the cell lines (p<0.05), with some lines demonstrating little or no IL-7R 

expression (HSB2, JURKAT, PER-255). To examine the relationship between IL-7R expression and drug 

sensitivity we examined microarray gene signatures that we have previously correlated with glucocorticoid 

resistance patterns in an extended panel of 15 T-ALL cell lines[25], that includes those shown in Figure 2. 

Across the 15 lines there was a significant inverse correlation between mRNA expression of the IL-7R and 

IC50 scores to both dexamethasone (r = -0.673; p<0.01) and methylprednisolone (r = -0.631, p<0.02, 

Pearson’s correlations), such that low IL-7R mRNA expression corresponded to glucocorticoid resistance. 

Thus the mean IC50 for the low IL-7R expressing lines in Figure 2C (HSB2, JURKAT, and PER-255) is 

three orders of magnitude higher (167µg/ml DEX; 259µg/ml MPRED) than for the four high expressing 

lines (0.03µg/ml DEX; 0.06µg/ml MPRED). Figure 2D demonstrates that only lines expressing IL-7R at 

relatively high levels respond to the addition of exogenous recombinant IL-7. Together these data are 

consistent with previous observations, made using primary T-ALL specimens, that IL-7 non-responsiveness 

correlates with reduced response to glucocorticoid therapy, and is thus an adverse prognostic indicator[28].  

 

Outcome prediction modeling using enriched biological pathways  

The 5-GC model was developed through a process of statistical, rather than biological, modeling to generate 

a robust diagnostic classifier. Although the individual genes that comprise the 5-GC have links to cancer 

biology and tumor development (see Discussion) we do not propose that they represent a coherent biological 

signature to explain clinical relapse. As a complementary approach therefore, we turned to Gene Set 

Enrichment Analysis (GSEA, http://www.broad.mit.edu/gsea)[29] to gain insight into the biological 

pathways differentially regulated in R vs. CCR specimens. Analysis was performed using the ranked gene 
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list from the RF performed in the Training Cohort (focusing on HG-U133A probesets only), and three 

biological gene sets were identified at the relevant false discovery rate (FDR) < 25% and nominal p-value 

<0.001. These were (i) NFκB pathway regulated genes, (ii) Genes of the Wnt/Ca
2+

/cGMP pathway (Global 

Cancer Map, Broad Institute), and (iii) Genes with cell adhesion receptor activity (Global Cancer Map, 

Broad Institute). The genes from these pathways that contribute most to the observed phenotype are referred 

to as the ‘leading edge’ and are listed in Table S3, Additional file 1. These leading edge genes were used in 

logistic regression to model outcome based on expression of each of the three pathways. Outcome prediction 

using the NFkB-pathway or Wnt/Ca
2+

/cGMP pathway models returned accuracies of >75% in both the 

Training Cohort, and the COG 9404 cohort, but did not perform so strongly in the POG 8704 cohort (Table 

4). However, the cell adhesion receptor pathway model accurately predicted outcome (75-85%) in all three 

cohorts (Table 4). These performances were significant in each of the individual cohorts and highly 

significant in the global analysis (p<0.0001, Table 4). Kaplan-Meier plots demonstrated that patients 

predicted to relapse using this model had significantly reduced relapse-free survival times in all three cohorts 

(Figure 3). 

 

DISCUSSION 

The fate of children who relapse with T-ALL remains dismal. This has fuelled considerable research into the 

discovery of ‘risk factors’ that are indicative of a patient’s likelihood of relapse before post-induction 

therapy is prescribed. Our study statistically modeled a 5-GC that successfully predicted T-ALL patient 

outcome in four independent studies across different platforms. In a complementary approach we used 

biological signatures to successfully model patient outcome in these studies. To our knowledge this is the 

first time gene classifiers have been developed that accurately model ALL relapse in more than two 

independent cohorts. It is important to note that the models described here could not be used to down-grade a 

patient’s risk classification since predictions of outcome under these models is in the context of the therapy 

each patient actually received. Thus CCR patients in these cohorts may potentially have relapsed if treated 

with lesser therapy. However, it would be possible to use such models to augment therapy. In the case of 

patients already stratified as high-risk (the majority of T-ALLs), this could include bone marrow transplant 

in first remission[6] or the use of experimental therapeutics. The best models generated in this study (the 5-

GC and Cell Adhesion Pathway) were associated with good average specificity across the four cohorts (88-
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93%), but achieved lower average sensitivity (47-70%). In clinical terms this means that application of these 

models as a diagnostic test could have successfully identified up to two-thirds of the patients in these cohorts 

destined to relapse, whilst potentially over-treating only a small percentage of patients (7-12%) that would 

have achieved CCR under current protocols. Although higher sensitivity would be desirable, the correct 

identification of even a few patients destined to relapse could further improve cure rates. 

In recent years much criticism has been directed towards microarray studies aiming to identify gene 

markers from small cohorts. Owing to the dimensionality of the data it is often possible to select genes at 

random that can discriminate between two phenotypes or patient subgroups with surprising accuracy. 

Furthermore, many statistical tools over-fit data such that the ability of classifiers to discriminate between 

phenotypes only extends to the cohort in which they were developed. However the probability of selecting 

gene classifiers at random that can discriminate between phenotypes in more than one cohort is vanishingly 

small. Validation of classifiers across multiple cohorts as described here (especially those identified using a 

permutative resampling algorithm such as the Random Forest) is empirical evidence of their robustness.  

In this study low expression of the IL-7R was recorded in diagnostic T-ALL specimens from patients 

who later relapsed, linking low IL-7R expression to eventual therapy failure. The IL-7 cytokine is normally 

essential for T-cell development, survival and proliferation[27], and can inhibit both spontaneous 

apoptosis[28] and the apoptotic responses to chemotherapeutic agents in T-ALL[30], with the level of 

expression of the IL-7R correlating with these responses[28]. As such, IL-7 has been proposed as an 

important factor supporting leukemogenesis[31], but a proportion of T-ALL patients have blasts that do not 

respond to IL-7[28]. This latter observation has been correlated with tumor maturation stage but it is also 

possible that it represents the acquisition of growth-factor independence. Growth-factor independence is a 

classical hallmark of a successful cancer cell[32] and indicates the development of potent pro-survival 

mechanisms. Importantly, T-ALL patients with an IL-7 non-responsive phenotype demonstrate poorer 

clinical responses to glucocorticoid therapy and thus have an adverse prognosis[28], consistent with our own 

findings in the present study. 

 Despite the obvious relevance of the IL-7R for T-ALL, the genes of the 5-GC were not selected on 

the basis of biological function. As such the 5-GC is considered as a tool for prognosis rather than for the 

interpretation of mechanisms of relapse, although the individual genes themselves do have links with cancer. 

The ABTB2 gene is involved with protein-protein interactions through its ankyrin repeats and BTB (POZ) 
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domains. Although its specific function is unknown, one study has reported the up-regulation of ABTB2 in 

gastric tumor metastasis, highlighting the possible role of this gene in aggressive malignant phenotypes[33]. 

The FAM13A1 gene has an unknown function but is induced in various cell types exposed to hypoxic 

conditions[34]. It has been reported to be down-regulated in malignant thyroid tissue[35] but up-regulated in 

ovarian and breast cancer with links to poor prognosis[34]. PLAC8 is conserved in all vertebrates and is 

expressed at high levels in immune cell types[36]. The function of this gene is also unclear but has been 

linked to proliferation and apoptosis. PLAC8 is over-expressed in hepatocellular carcinoma tumours[37] and 

reduced in Paclitaxel-resistant prostate cancer[38].  

Our alternative approach focused on identifying biological pathways that are involved in the 

progression to therapy failure in T-ALL. The NFκB and Wnt signaling pathways both had significant 

predictive power in this regard. The NF-κB pathway is highly active in T-ALL and is one of the major 

mediators of NOTCH1-induced transformation, establishing NFκB as a potentially promising target for T-

ALL therapy[39]. The Wnt pathway is also important for T cell development and proliferation and is 

deregulated in several types of leukemia[40]. Although few studies have directly reported a role for Wnt 

signaling in the pathogenesis of T-ALL, antagonism of Wnt signaling has been shown to lead to 

chemotherapy resistance in a model of acute myeloid leukemia, via the downstream action of NFκB[41]. 

The pathway model that predicted relapse with the highest accuracy across all four cohorts in the present 

study was the Cell Adhesion Receptor geneset, with 12 out of the 14 genes representing integrins (Table S3, 

Additional file 1). Interestingly, LGALS8, the final member of the 5-GC, codes for a secreted mammalian 

beta-galactosidase binding protein (galectin-8) that binds with high affinity to a variety of cell surface 

integrins, thereby modulating cell adhesion and cell survival[42, 43]. Adhesion between host and tumor 

cells, and extrinsic signals within the tumor microenvironment can promote an optimal niche for tumor cell 

survival and is an essential component of tumor invasion and metastasis[44, 45]. New strategies for therapy 

have consequently been designed to disrupt these tumor-stromal cell interactions. For example, the inhibition 

of CXCR4 (a key receptor for tumor cell migration and adhesion) has been shown to overcome stromal-cell 

mediated drug resistance in acute myeloid leukemia and chronic lymphocytic leukaemia[46]. Clinical trials 

using specific integrin inhibitors have also shown promise in different types of solid tumours[47, 48]. 

Clearly cell adhesion interactions have an important role to play in tumor progression; the observations from 

the present study indicate that they may also contribute to the mechanisms that lead to disease recurrence in 
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ALL. 

 

CONCLUSIONS 

We have used two different approaches to identify gene signatures that can successfully discriminate relapse 

and CCR patients at the time of diagnosis across multiple patient cohorts and platforms. Defined gene 

classifiers (such as the 5-GC) containing a smaller number of genes may be useful to augment existing risk 

stratification regimens for patients diagnosed with ALL as they can easily be adapted to qRT-PCR 

technology[18, 22]. The complementary method we present here uses larger, biologically defined genesets 

that provide important clues to the underlying mechanisms of relapse. Such insights may provide for the 

development of improved therapies for T-ALL. 
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FIGURE LEGENDS 

Figure 1: Kaplan-Meier survival curves for patients predicted as CCR or relapse using the 5-GC model in 

(A) Training Cohort (n=50); (B) Validation Cohort (n=34); (C) COG 9404 (Winter et al, n=44); (D) POG 

8704 (Winter et al, n=41). 

 

Figure 2: Functional relevance of IL-7R as a prognostic marker. (A) Kaplan-Meier survival curves based on 

levels of IL-7R (qRT-PCR mRNA expression tertiles) in the Training Cohort; (B) IL-7R mRNA expression 

in a panel of T-ALL cell lines measured by qRT-PCR; (C) Cell surface IL-7R (CD127) protein expression in 

T-ALL cell lines measured by flow cytometry; (D) Growth response of T-ALL cell lines over 4 days to 

exogenous IL-7 (10ng/ml) as measured by MTT (% proliferation compared to medium control). 

 

Figure 3: Kaplan-Meier survival curves for patients predicted as CCR or relapse using the 14 gene ‘Cell 

Adhesion Receptor’ biological model in (A) Training Cohort (n=50); (B) COG 9404 (Winter et al, n=44); 

(C) POG 8704 (Winter et al, n=41). 
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TABLES 

 

 

Table 1. Clinical features of T-ALL patients in the Training and Validation Cohorts 

 

 Training cohort (n=50) Validation cohort (n=34) 

 CCR (n=28) Relapse (n=22) CCR (n=25) Relapse (n=9) 

Sex 

  Male/Female 21/7 21/1 14/11 9/0 

Age at diag (years) 

  Median (Range) 13.1 (2.1-16.9) 12.1 (1.8-17.8) 7.1 (2.2-18.3)* 8.8 (1.8-17.5) 

WBC (x10
9
/L) 

  Median (Range) 171.9 (1.1-791) 219.2 (4.9-700) 113.1 (8.2-524.4) 161.8 (13.4-882) 

BM blast at diag (%) 

  Median (Range) 94 (70-100) 91 (74-99) 90 (35-99) 95 (70-99) 

Cytogenetics 

  Normal (46 C) 2 3 13 4 

  Pseudodiploid (46 C) 12 6 5 2 

  Hyperdiploid (> 47 C) 3 2 3 0 

  Hypodiploid (< 46 C) 0 0 2 1 

  N/A 11 11 2 2 

NCI Risk 

  Standard 0 0 6 1 

  High 28 22 19 8 

Induction result 

  M1 25 19 24 8 

  M2 3 0 0 0 

  M3 0 0 0 0 

  N/A 0 3 1 1 

Follow-up time (years) 

  Median (Range) 7.3 (3.3-9.2)  8.8 (4.3-11.9)  

Time to relapse (years) 

  Median (Range)  1.3 (0.2-3.8)  1.4 (0.5-3.3) 

WBC, white blood cell count; BM, bone marrow; diag, diagnosis; C, chromosomes; N/A, not available; NCI, 

National Cancer Institute; M1, < 5%blasts in BM; M2, 5-25% blasts in BM; M3, > 25% blasts in BM. *P = 

0.0082 by Mann-Whitney t-test compared to CCR in the training cohort.  
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Table 2. Expression of genes from the 5-GC measured by both array (HG-U133Plus2) and qRT-PCR 

in specimens from the Training Cohort 

 

Mean 

Expression 

(Array) 

Fold Change  

(R/CCR) 
Gene Symbol 

(Probe ID) 
Gene 

RF 

Rank 

R CCR Array 
qRT-

PCR 

r 

ABTB2 

(213497_at) 

Ankyrin repeat and BTB (POZ) 

domain-containing 2 
12 119.8 89.7 1.34 3.11 0.76 

IL7R 

(205798_at) 

Interleukin-7 receptor 
43 292.0 542.7 0.54 0.47 0.92 

LGALS8 

(208936_x_at) 

Lectin, galactose binding, 

(Galectin 8) 
288 197.4 231.8 0.85 0.37 0.56 

PLAC8 

(219014_at) 

Placenta-specific 8 (Onzin) 
297 530.4 979.5 0.54 0.22 0.90 

FAM13A1 

(217047_s_at) 

Family with sequence similarity 

13, member A1 
356 70.0 84.0 0.83 0.30 0.69 

r, correlation between HG-U133Plus2 and qRT-PCR fold change data (n=40); R, relapse; CCR, continuous 

complete remission. 
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Table 3. Univariate Cox proportional hazard regression analyses of the risk of relapse in the Training 

Cohort (n=50) in relation to diagnostic features and the 5-GC score. 

 

Variable 
No. of  

Patients 
Hazard Ratio 95% CI 

a 
p-value 

Age at diagnosis     

    < 10 years 17 1 
b)

   

    ≥ 10 years 33 1.3 (0.506, 3.32) 0.59 

WBC     

    < 50/nl 12 1
 b)

   

    > 50/nl 38 1.15 (0.425, 3.12) 0.78 

Gender     

    Female 8 1
 b)

   

    Male 42 5.53 (0.742, 41.2) 0.095 

5-GC score 50 1.31 (1.19, 1.44) <0.0001 

a) 95% confidence interval; b) reference group. 
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Table 4. Validation of gene-classifier models for outcome prediction across multiple T-ALL cohorts. 

 

Model Cohort Acc PPV NPV Sens Spec P-value 

Training 82 81 83 77 86 9.4x10
-6 

Validation 79 100 78 22 100 0.064 

COG 9404† 75 71 76 36 93 0.025 

POG 8704† 68 83 66 29 96 0.066 

5-GC 

(5 genes) 

Combined 76 81 75 47 93 1.5x10
-9

 (1.2x10
-4

) 

Training 76 71 81 77 75 4.8x10
-4 

Validation - - - - - - 

COG 9404† 77 83 76 36 97 0.009 

POG 8704† 56 44 59 24 79 1 

Pathway NFκB 

(7 genes) 

Combined 70 67 72 49 84 7.2x10
-5

 (0.073) 

Training 76 75 77 68 82 4.6x10
-4 

Validation - - - - - - 

COG 9404† 75 67 77 43 90 0.019 

POG 8704† 68 63 72 59 75 0.05 

Pathway 

Wnt/Ca
2+

/cGMP 

(12 genes) 

Combined 73 69 76 58 83 8.7x10
-7

 (0.0011) 

Training 82 84 81 73 89 8.6x10
-6 

Validation - - - - - - 

COG 9404† 75 62 81 57 83 0.012 

POG 8704† 85 87 85 76 92 1.1x10
-5 

Pathway 

Cell Adhesion 

(14 genes) 

Combined 81 79 82 70 88 8.2x10
-12

 (4.5x10
-7

) 

 
Cohorts represent the Training Cohort (HG-U133Plus2, n=50), Validation Cohort (qRT-PCR, n=34), COG 

9404 (HG-U133Plus2, n=44), and POG 8704 (HG-U133A, n=41); Acc, Accuracy; PPV, Positive Predicted 

Value; NPV, Negative Predicted Value; Sens, Sensitivity; Spec, Specificity (all model performances given as 

% and combined using means weighted for cohort size and CCR/relapse patient composition); P-value, 

Fisher’s Exact Test of individual or combined model performances across the four cohorts (significance with 

the omission of the Training Cohort given in parenthesis); † Microarray cohorts downloaded from Winter et al 

(2007). 
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