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ABSTRACT

Background: The t(9;22)(q34;q11), generating the Philadelphia (Ph) chromosome, is found in
more than 90% of patients with chronic myeloid leukemia (CML). As a result of the translocation,
the 3’ portion of the ABLI oncogene is transposed from 9q34 to the 5’ portion of the BCR gene on
chromosome 22 to form the BCR/ABLI fusion gene. At diagnosis, in 5—10% of CML patients the
Ph chromosome is derived from variant translocations other than the standard t(9;22).

Results: We report a molecular cytogenetic study of 452 consecutive CML patients at diagnosis,
that revealed 50 cases identifying three main subgroups: i) cases with variant chromosomal
rearrangements other than the classic t(9;22)(q34;q11) (9.5%); ii) cases with cryptic insertions of
ABLI into BCR, or vice versa (1.3%); iii) cases bearing additional chromosomal rearrangements
concomitant to the t(9;22) (1.1%). For each cytogenetic group, the mechanism at the basis of the
rearrangement is discussed.

All breakpoints on other chromosomes involved in variant t(9;22) and in additional rearrangements
have been characterized for the first time by Fluorescence In Situ Hybridization (FISH) experiments
and bioinformatic analyses. This study revealed a high content of Alu repeats, genes density, GC
frequency, and miRNAs in the great majority of the analyzed breakpoints.

Conclusions: Taken together with literature data about CML with variant t(9;22), our findings
identified several new cytogenetic breakpoints as hotspots for recombination, demonstrating that
the involvement of chromosomes other than 9 and 22 is not a random event but could depend on
specific genomic features. The presence of several genes and/or miRNAs at the identified

breakpoints suggests their potential involvement in the CML pathogenesis.



Background

Chronic myeloid leukemia (CML) is characterized by the constitutive expression of the
5'BCR/3'ABLI fusion gene resulting from the t(9;22)(q34;q11); this translocation is evident in more
than 90% of patients and produces the Philadelphia chromosome (Ph)[1].

In 5-10% of CML patients, the 5'BCR/3'’ABLI fusion gene arises from complex variant
rearrangements which may involve one or more chromosomes in addition to 9 and 22 [2,3]. In some
variant t(9;22) cases, additional material is transferred onto the Ph chromosome, resulting in a
"masked" Ph whereas other CML patients show a classic Ph and an atypical der(9) chromosome as
a consequence of a rearrangement between the der(9)t(9;22) and another chromosome [4,5]. Serial
translocations or a single simultaneous event are alternative hypotheses proposed to justify the
occurrence of these complex rearrangements [6].

In a subset of CML patients, cryptic rearrangements have been postulated to induce the chimeric
gene formation, such as a nonreciprocal insertion between chromosomes 9 and 22 or two sequential
translocations restoring the partner chromosomes morphology [7-11].

Microdeletions on the der(9) chromosome next to the t(9;22) breakpoint have been described in
patients with classic and variant Ph translocations, and appear to be a valuable prognostic factor
[12-17]. Recently, the frequency of such deletions has been investigated in the subgroup of CML
patients with a masked Ph chromosome [18]. Additional genomic deletions on the third derivative
chromosome have also been described in CML cases with variant translocations [19,20].

To our knowledge, an accurate breakpoints identification and bioinformatic analysis of other
chromosomes involved in variant t(9;22) or in concomitant chromosomal rearrangements apart
from the t(9;22) has never been performed in CML.

In this paper, a detailed molecular cytogenetic characterization of 50 (11.1%) out of 452 chronic
phase (CP) CML patients was carried out to define the precise breakpoints on chromosomes other
than 9 and 22. Bioinformatic analysis of breakpoint regions was performed to investigate the
presence of repeated elements (Alu, LINE), GC content, Segmental Duplications (SDs), miRNAs,
and known genes. Our findings, taken together with a review of literature data, allowed us to

identify new cytogenetic hotspots in CML cases with variant t(9;22).

Methods
Patients
The study included 452 CP-CML patients. All of them were newly diagnosed at our hospital
between 1990 and 2009. As a consequence of the long time span for sample accrual, several

therapeutic regimens (hydroxyurea, interferon-o., imatinib, nilotinib, and dasatinib) were adopted.



Out of the 452 CP-CML cases, 50 showed variant t(9;22) or additional chromosomal

rearrangements, 9 of which have been characterized in previous reports by our group [19-23].

Conventional cytogenetics

Conventional cytogenetic analysis of a 24-48 hour culture was performed at diagnosis of CML on
bone marrow cells by standard techniques and evaluated by Giemsa-Trypsin-Giemsa (GTGQG)
banding at about the 400-band level according to the ISCN [24]. At least 25 metaphases were

analyzed for each case.

Identification of cytogenetic hotspots

To identify new cytogenetic hotspots, an estimate of the Haploid Autosomal Length (HAL) of the
bands involved in variant t(9;22) cases was performed [25,26]. We calculated the number of breaks
expected (E) in any band, given the null hypothesis of a random distribution of all breaks across the
genome. Reviewing large series of CML patients with variant t(9;22) we assessed the number of
breaks observed (O) in each band and divided this value by the expected (E) value to determine an

O/E ratio. An O/E ratio >1 identified new cytogenetic hotspots.

FISH analysis

FISH analysis was performed on bone marrow samples of all CP-CML patients at diagnosis using
“home-brew” FISH probes specific for ABLI and BCR genes, validated in previous papers
[13,16,27]. Breakpoints characterization and deletions size definition were carried out with
additional bacterial artificial chromosome (BAC) and Phage Pl-derived artificial chromosome
(PAC) probes. All clones were selected according to the University of California Santa Cruz
(UCSC http://genome.ucsc.edu/index.html; March 2006 release) database [28]; the mapping of each
clone was first tested on normal human metaphases. Chromosome preparations were hybridized in
situ with probes labeled with biotin by nick translation [29]. Briefly, 500 ng of labeled probe were
used for FISH experiments; hybridization was performed at 37 °C in 2x standard saline citrate
(SSC), 50% (vol/vol) formamide, 10% (wt/vol) dextran sulphate, 5 pg COT1 DNA (Bethesda
Research Laboratories, Gaithersburg, MD), and 3 ug sonicated salmon sperm DNA in a volume of
10 pL. Post-hybridization washing was done at 60°C 0.1x SSC. Biotin-labeled DNA was detected
with Cy3-conjugated avidin. In cohybridization experiments, other probes were directly labeled
with fluorescein. Chromosomes were identified by 4',6-diamidino-2-phenylindole (DAPI) staining.
Digital images were obtained using a Leica DMRXA epifluorescence microscope equipped with a

cooled CCD camera (Princeton Instruments, Boston, MA). Cy3 (red; New England Nuclear, NJ),



fluorescein (green; NEN Life Science Products, Boston, MA), and DAPI (blue) fluorescence
signals, which were detected using specific filters, were recorded separately as gray-scale images.

Pseudocoloring and merging of images were performed with Adobe Photoshop software.

Bioinformatic analysis

Breakpoint regions on other chromosomes involved in variant t(9;22) and additional rearrangements
were included in 250 Kb size intervals, according to the resolution limit of the BAC clones used for
breakpoints definition. Each interval was checked for the presence of interspersed repeats classes
(Alu and LINE repeats), SDs, GC content, and gene density. The UCSC Table Browser [28] was
queried for summary analysis about the items belonging to the tracks "RepeatMasker", "Segmental
Dups", "GC Percent", and "RefSeq Genes". For SDs and RefSeq gene analysis, both “Item count”
and “Item Bases” values were considered, to assess their number and the bases percentage involved
in SDs or coding sequences, respectively. For each genomic feature, the obtained value was
normalized to the mean value for the examined chromosome. For example, in case 1, the breakpoint
mapped in 1q32.1 (chr1:203,949,120-204,199,120) showed an Alu frequency of 13.47%. As the
mean Alu content inside chromosome 1 is estimated to be 11.9%, the normalized value will be 1.13
(i.e. 13.47/11.90). Therefore, greater or lesser values than 1 correspond to regions with a richer or
poorer content of a specific genomic feature than those observed along the entire chromosome.

In view of the known low miRNAs density in the human genome, regions spanning 2 Mb
proximally and distally to breakpoints were investigated by querying the UCSC database at the
track “sno/miRNA”. For each chromosome the expected miRNA density within a 4 Mb interval
was established according to the following formula: number of miRNA along the entire
chromosome / size in bp of the chromosome x 4000000 bp. The identification of the predicted
miRNAs  target genes was performed by querying the miRGen  database
(http://www.diana.pcbi.upenn.edu/cgi-bin/miRGen/v3/Targets.cgi). Intersection data from the three
widely used target prediction programs (miRanda, PicTar, TargetScan) were considered. The
definition of target genes function as oncogenes or tumor suppressor genes (TSGs) was made
according to the National Center for  Biotechnology  Information  (NCBI,

http://www.ncbi.nlm.nih.gov/gene/) database.

Results

FISH data

Cytogenetic analysis and FISH experiments with specific BAC/PAC probes for the ABLI and BCR
genes allowed us to detect 50 (11.1%) out of 452 cases, that identify 3 main subgroups of CML



patients showing variant t(9;22) rearrangements, the occurrence of cryptic insertions of the ABLI in
the BCR region (or vice versa), and the presence of additional chromosomal abnormalities,
respectively (Table 1).

1. Variant t(9;22) rearrangements. Forty-three (9.5%) out of 452 CML patients showed the
involvement of one (90.7%) or more chromosomes (9.3%) in addition to 9 and 22. These complex
variant translocations generated a classic Ph together with a masked der(9) in 36 out of 43 cases
(83.7 %) and a masked Ph in association with a classic der(9) chromosome in 7 patients (16.3%)
(Table 1). Cases with a masked der(9) showed the presence of additional material belonging to
partner chromosomes other than chromosome 22 (Fig. 1A,B). Several chromosomes were involved
in these variant translocations, with a prevalence of chromosomes 4, 6, 12, and 17 (Table 1). The
5'BCR/3'ABLI fusion gene was localized on the Ph chromosome in all these cases, whereas the
5'ABLI1/3'BCR gene was retained on the der(9) only in 4 (11.1%) out of 36 patients (Table 1). In the
remaining 32 (88.9%) cases, the 5’ABL1/3'BCR gene was not detected on der(9) due to deletions
and/or 3'BCR transfer onto partner chromosomes (Table 1; Fig. 1A,B). Molecular cytogenetic
characterization performed to verify the presence of microdeletions at the level of the
rearrangements breakpoints revealed sequences loss in 18 out of the 43 (42%) cases. Among these
18 patients, 10 (55.6%) showed microdeletions of sequences belonging to the third partner
chromosome, revealing a high incidence of this kind of deletions in t(9;22) variant rearrangement
cases (Table 1).

Among 7 CML cases with a "masked Ph" chromosome, 3 showed the 5'BCR/3'ABLI fusion signal
on 22ql1, the second breakpoint on the derivative chromosome 22 mapping inside chromosome 9
sequences distal to the ABLI gene (Table 1; Fig. 1C). In 3 cases the fusion gene was detected on the
third partner chromosome, the second chromosome 22 breakpoint being localized centromerically
to the BCR gene (Table 1; Fig. 1D). In patient #42 the insertion of 5' BCR into the ABLI gene
caused the 5'BCR/3'ABLI localization on der(9). The 5’ABLI/3'BCR gene was detected on the
der(9) in 3 cases with masked Ph, was deleted in case #39 whereas in the remaining patients the
5’ABLI gene was retained on the der(9) and the 3’BCR gene was transferred onto other derivative
chromosomes (Table 1). Chromosome 9 sequences loss next to the rearrangement breakpoint was
observed in case #43 and an unusual loss of a region of about 400 Kb localized telomerically to the
ABLI gene was detected in case #41 [22] (Table 1).

2. Cryptic insertions. Six (1.3%) out of the 452 CML cases showed cryptic insertions of ABL/ into
BCR, or vice versa, as the cause of the 5'BCR/3'ABLI fusion gene generation (Fig. 1E,F). Four
(66.7%) of these cases are indicated as "Ph negative” (Ph’), with chromosome 22 appearing normal

without the presence of additional genomic material (Table 1). Two (33.3%) out of these 6 cases



were also included in the previous group as they showed variant rearrangements generating a
masked Ph (Table 1). The 5’'BCR/3'ABLI gene was detected on the der(9) or on the der(22) at a
ratio of 1:1 as a consequence of 5’ BCR insertion in 9q34 or 3" ABLI insertion in 22qll,
respectively (Table 1).

3. Chromosomal rearrangements concomitant to the presence of 5’'BCR/3'ABLI. Conventional and
molecular cytogenetic analysis showed 5 (1.1%) out of 452 CML cases bearing additional
chromosomal rearrangements concomitant to the generation of the 5’BCR/3’ABLI fusion gene
(Table 1; Fig. 1G,H). Cases #46 and #47 were also included in the previous patients group as they

showed cryptic insertions; the remaining 3 CML cases carried a classic Ph chromosome.

Bioinformatic analysis of breakpoints on other chromosomes involved in variant t(9;22) or in
concomitant chromosomal rearrangements.

FISH experiments with BAC clones specific for other chromosomes involved in variant or
additional chromosomal rearrangements revealed a total number of 58 breakpoints. These
breakpoints were mapped within a single BAC clone or in the region between two overlapping or
adjacent clones (Table 2). In cases with sequences loss, two different breakpoints were defined at
the level of the deleted regions boundaries.

Interestingly, the majority of breakpoints on chromosomes involved in variant or additional
chromosomal rearrangements showed a high frequency of Alu repeats (Table 2; Fig. 2A). In fact, 41
out of 58 (71%) breakpoints showed an Alu content of more than one whereas the remaining 17 out
of 58 (29%) had a content of less than one. Instead, the LINE content was lower than one in 44 out
of 58 (76%) breakpoints (Table 2). Thirty-five out of 41 breakpoints (85%) with Alu >1 showed a
LINE amount <1 (Table 2).

Most of the analyzed breakpoints map within gene-rich regions as a RefSeq Genes Item count of
more than one was observed in 45 out of 58 (78%) breakpoints (Table 2; Fig. 2B). Moreover, 40 out
of 58 (69%) breakpoints showed a RefSeq Genes Item bases value of more than 1 (Table 2). It is
worthy of note that 34 out of 41 bp (83%) with Alu >1 showed a RefSeq Genes Item count >1
(Table 2). The number of known genes localized at breakpoints and their function as oncogenes
and/or TSGs are reported in Table 3.

In the search for SDs, 49 out of 58 (84%) and 51 out of 58 (88%) breakpoints revealed SDs Item
count and SDs Item bases of less than one, respectively (Table 2). In cases showing the presence of
SDs within breakpoint regions no specific association with chromosomes 9 and 22 was detected, as

the duplicated elements recognized several chromosomal regions.



Finally, a GC content >1 was detected in 43 out of 58 (74%) breakpoints (Table 2; Fig. 2C). A GC
content of more than one was identified in 34 out of 41 (83%) breakpoints with Alu >1 and in 34
out of 45 (76%) with a RefSeq Genes Item count >1 (Table 2).

The search for miRNAs revealed a different density from the expected value in 32 out of 58 (55%)
breakpoint regions (Fig. 2D). In detail, in 30 (94%) and 2 out of 32 (6%) breakpoints a higher or
lower number of miRNA than the expected value was identified, respectively (Fig. 2D). In the
remaining 26 out of 58 (45%) breakpoints no miRNA was revealed in the 4 Mb analyzed intervals.
It is noteworthy that in case #49 with an additional t(14;15)(q32;q24) a miRNA cluster of 54
elements was revealed in the 14q32 breakpoint region. In this patient a microdeletion of about 450
Kb was detected on 14q32, resulting in the loss of almost the entire miRNA cluster. The list of
miRNAs found at the breakpoints is reported in Table 4; in addition to the 14q32 miRNA cluster a
total number of 63 known miRNA was identified, 8 (13%) of which show involvement in
hematological malignancies. Moreover, querying the miRGen database (the intersection data from
the miRanda, PicTar, and TargetScan programs) allowed the identification of the predicted target
genes in 19 out of 63 (30%) analyzed miRNAs (see Additional File 1). Among the identified target
genes, several play a role as oncogenes or TSGs (see Additional File 1). Noteworthy, some
miRNAs share the same target oncogenes or TSGs; for example, PPMID (protein phosphatase,
Mg2+/Mn2+ dependent, 1D) and AKT3 (v-akt murine thymoma viral oncogene homolog 3) genes

are the most frequent miRNAs targets (see Additional File 1).

Identification of cytogenetic hotspots

Our study revealed 46 cytogenetic breakpoints on other chromosomes involved in variant t(9;22)
rearrangements (see Additional File 2). The assessment of the O/E ratio for each breakpoint allowed
us to identify 24 hotspots, 12 of which have been previously described in literature [26] (see
Additional File 2). Notably, 4 out of 12 new hotspots showed a ratio >2 involving the chromosomal
bands 4q12, 9pl1, 11921 and 21g22 (see Additional File 2).

To investigate the breakpoints distribution in the genome, a review of literature data about variant
t(9;22) following the study by Fisher et al. was carried out [4,30-33]. In total, 60 new hotspots were
identified, 18 of which have already been reported [26]. However, 10 previously published hotspots
were not supported by our literature review (see Additional File 2). Among the 60 new hotspots, 27

showed an O/E ratio > 2.



Treatment response

Data on the response to treatment in the analyzed CML patients were only available for about 50%
of the cases; a summary is shown in Table 5. All the cases evaluable for the response to interferon-
o therapy were non responders whereas 11 out of 17 (65%) cases treated with imatinib achieved
cytogenetic response. Among patients resistant to imatinib, 3 (75%) treated with dasatinib achieved

CCyR.

Discussion

Literature data indicate that breakpoints on additional chromosomes involved in CML cases with
variant t(9;22) are not distributed randomly in the genome but show hotspots [26]. Several genomic
features such as the density of CpG islands, genes, Alu repeats, recombination events, openness of
the chromatin structure and transcription activity have been correlated to the occurrence of
breakpoints in variant t(9;22) cases [26,33,34].

In this study, we have performed for the first time a precise molecular cytogenetic characterization
of breakpoints involved in variant t(9;22) or in additional rearrangements, in 50 CML cases. To
identify genomic elements with a role in the occurrence of chromosomal translocations,
bioinformatic analysis was carried out to investigate the distribution and density of several genomic
features, such as Alu, LINE, GC, SDs, miRNAs, and genes at breakpoint regions. To date,
according to the miRBase database (http://www.mirbase.org) [35] the total number of known
miRNAs is very low (about 720) as compared to the human genome size (3.1 x 10° bp). In this
study the miRNAs density within the 4 Mb analyzed intervals resulted higher than the expected
value in 32 out of 58 (55%) breakpoint regions. These findings suggest a potential role for miRNAs
in the pathogenesis of CML cases with variant or additional chromosomal rearrangements. Few
miRNAs located at breakpoint regions have previously been described in several hematological
malignancies [36-48]. However, none of them was involved in CML. It is worth noting the presence
of the miRNA cluster next to the breakpoint region in 14q32 (case #49). miRNAs in this region are
organized in an imprinted domain regulated by a differentially methylated region located upstream
of the miRNA cluster. It has been reported that these miRNAs act as tumor suppressor genes and
that changes in their methylation status could promote tumor development [49]. Querying of
miRGen and NCBI databases showed the involvement of interesting target oncogenes or TSGs
implicated in a wide variety of biological processes including cell proliferation, differentiation,
apoptosis, and tumorigenesis.

Increasing evidence shows a high density of interspersed repetitive elements, such as Alu and LINE,

at some chromosomal translocation breakpoints, suggesting a mediator role of some recurrent



rearrangements in tumors [50]. Because a much higher density of Alu repeats has been observed in
the DNA sequences flanking the ABLI and BCR genes, it has been hypothesized that Alu elements
provide hotspots for non allelic homologous recombination and mediate chromosomal translocation
in CML [34,50]. Our data, supported by bioinformatic evidence, suggest that the high density of Alu
repeats could increase the propensity to undergo rearrangements also of other chromosomes
involved in variant t(9;22). In our CML series, a high Alu density was detected in 71% of the
analyzed breakpoints. Moreover, a rich content of Alu repeats was revealed also on breakpoint
regions identified in chromosomal rearrangements concomitant to the t(9;22).

Literature data revealed a preferential breakpoints distribution in CML cases with variant t(9;22)
within the CG-richest regions of the genome corresponding to the G-light banding karyotype
[26,33]. Our data confirmed this association, as 83% of the identified cytogenetic breakpoints
mapped inside G-light bands. Moreover, we report the first bioinformatic evidence of the
association between GC-content and breaks in cases with variant t(9;22), as 73% of the molecular
breakpoints showed a GC content >1. In addition, these data showed that CG richness was related
to other genomic features such as Alu content and a greater gene density than the mean expected
value.

The search for SDs revealed a low density in the majority of the analyzed breakpoints, without
showing any specific association with chromosomes 9 and 22 regions, unlike what has been
reported about the occurrence of the t(9;22) in CML [51].

Moreover, our study provided an outline of the frequency and molecular features of the most
relevant cytogenetic groups identified in a very large series of CML patients at diagnosis. Three-
way translocations were the most frequent among variant t(9;22) rearrangements, chromosomes 4,
6, 12, and 17 being common partners. However, no cytogenetic breakpoints clustering was revealed
when the same partner chromosome was rearranged, except for the 3p21 band, that was involved in
3 CML cases with variant t(9;22).

As to the mechanisms involved in the formation of the variant t(9;22) rearrangements, our data
indicated that the most probable mechanism, identified in cases with a “masked der(9)”
chromosome, is a single event consisting of multiple simultaneous breaks and rejoins (one-step
model). In fact, splitting of the 5’ABL1/3'BCR fusion gene signal was observed in the majority (27
out of 36, 75%) of analyzed cases. A two-step mechanism was hypothesized in about 11% of cases
bearing a “masked der(9)” chromosome; the permanence of the 5’ABLI/3'BCR gene on the der(9)
suggests that a second break occurred inside the chromosome 22 sequence telomeric to the BCR

gene. On the contrary, in 71.4% of cases (#37 - #41) with a “masked Ph” chromosome a second
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break located proximally to BCR or distally to ABLI was identified, suggesting the occurrence of a
two-step mechanism in the majority of the CML patients included in this group.

In our study, FISH ‘walking’ with BAC/PAC contigs belonging to the chromosomes 9 and 22 next
to the t(9;22) breakpoint regions allowed us to assess the frequency of deletions in three main
cytogenetic subgroups of CML patients and the size of these microdeletions. Confirming the
deletion frequency reported in literature [12], 12 out of the 36 (33%) cases with a “masked der(9)”
chromosome showed chromosome 9 and/or 22 sequences loss. Moreover, in about 55% of these
patients we found extensive genomic deletions on the third chromosome, in addition to deletions on
der(9). Chromosome 9 sequences deletions were detected in 3 out of 6 (50%) cases with a masked
Ph (#39, #41, and #43) and in 1 out of 4 (25%) Ph™ cases (#44). These frequencies are higher than
the value recently reported in literature [18].

The biological significance and the prognostic impact of the cytogenetic molecular heterogeneity
occurring in the generation of the 5’BCR/3’ABLI fusion gene remain to be clarified. However, the
bioinformatic analysis performed in this study on a large number of breakpoints in CML cases with
variant t(9;22) or additional chromosomal alterations revealed that the rearranged regions are
characterized by an elevated content of miRNAs, Alu repeats, GC and known genes.

In conclusion, this genomic analysis of breakpoint regions provides clues to a better understanding
of the pathogenetic mechanisms that underlie CML onset. Further analyses will be needed to

demonstrate the functional meaning of these genomic features.
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Figure Legends

Figure 1. FISH pattern observed with specific probes for the ABLI and BCR genes on bone
marrow metaphases from the analyzed CML patients. Examples from each of the identified
cytogenetic groups are shown: “masked der(9)” (A,B), “masked Ph” (C,D), “cryptic insertions”

(E,F), and “concomitant rearrangements” (G,H).

Figure 2. Histograms representing the frequency distribution of genomic features in the
breakpoint regions. All values shown for Alu (A), RefSeq Genes Item count (B), GC (C), and
miRNAs (D) are reported in logarithmic scale. Chromosomal bands with a null value were excluded
from the analysis. The observed distribution of miRNAs within 4 Mb intervals (brown) was

compared to the expected mean value for each chromosome (orange).
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Table 4. Known miRNA mapped at the breakpoint regions.

Cytogenetic Band
1p34.2

1932.1

2q37.1
3p21.31

4p16.3

6p12.3
7pl4.3

11pl5.4

11q12.1
11q13.1

11g21
12p13.32

12q13.13
12q13.2

13q14.12

14q11.2

14¢32.31

14¢32.31
15q24.1

15q24.3
16p11.2
17p13.1

17p13.3

179253

19q13.32

20q13.33

miRNA

mir-30e
mir-30c-1
mir-135b
mir-29c¢
mir-29b-2
mir-205
mir-562
mir-1226
mir-425
mir-191
mir-566
mir-943
mir-571
mir-586
mir-550-2
mir-548n
mir-675
mir-483
mir-130a
mir-1237
mir-192
mir-194-2
mir-612
mir-5481
mir-200c
mir-141
mir-1293
mir-196a-2
mir-615
mir-148b
mir-1228
mir-616
mir-26a-2
mir-16-1
mir-15a
mir-208a
mir-208b

miRNA cluster 1

miRNA cluster 2
mir-630
mir-631
mir-184
mir-1826
mir-195
mir-497
mir-324
mir-22
mir-132
mir-212
mir-657
mir-338
mir-1250
mir-330
mir-642
mir-769
mir-220c
mir-1-1
mir-133a-2
mir-124-3
mir-941-1

miRNA position

¢chr1:40,992,614-40,992,705
chr1:40,995,543-40,995,631
chr1:203,684,053-203,684,149
chr1:206,041,820-206,041,907
chr1:206,042,411-206,042,491
¢chr1:207,672,101-207,672,210
chr2:232,745,607-232,745,701
chr3:47,866,049-47,866,123
chr3:49,032,585-49,032,671
chr3:49,032,805-49,033,396
chr3:50,185,763-50,185,856
chr4:1,957,909-1,958,002
chr4:333,946-334,041
chr6:45,273,389-45,273,485
chr7:32,739,118-32,739,214
chr7:34,946,897-34,946,971
chr11:1,974,565-1,974,637
chr11:2,111,940-2,112,015
chr11:57,164,997-57,165,585
chr11:63,892,650-63,892,751
chr11:64,414,935-64,415,544
chr11:64,415,153-64,415,737
chr11:64,968,505-64,968,604
chr11:93,839,309-93,839,394
chr12:6,942,873-6,943,440
chr12:6,943,271-6,943,865
chr12:48,914,192-48,914,262
chr12:52,671,789-52,671,898
chr12:52,714,001-52,714,096
chr12:53,017,267-53,017,365
chr12:55,874,554-55,874,626
chr12:56,199,213-56,199,309
chr12:56,504,409-56,504,992
chr13:49,521,110-49,521,198
chr13:49,521,006-49,521,588
chr14:22,927,645-22,927,715
chr14:22,957,036-22,957,112

chr14:99,645,745--101,096,512

chr14:99,645,745-103,653,604
¢chr15:70,666,612-70,666,708
chr15:73,433,005-73,433,079
chr15:77,289,185-77,289,268
chr16:33,873,009-33,873,093
chr17:6,861,408-6,861,994
chr17:6,861,954-6,862,065
chr17:7,067,340-7,067,422
chr17:1,563,947-1,564,031
¢chr17:1,899,952-1,900,052
¢chr17:1,900,315-1,900,424
chr17:76,713,671-76,713,768
chrl7:76,714,278-76,714,344
chr17:76,721,591-76,721,703
chr19:50,834,092-50,834,185
¢chr19:50,870,026-50,870,122
chr19:51,214,030-51,214,147
chr19:53,755,341-53,755,423
chr20:60,561,708-60,562,278
chr20:60,572,314-60,572,915
chr20:61,280,297-61,280,383
chr20:62,021,238-62,021,326

Hematologic
Malignancies
involvement
no

no

no

CLL36,37, ALLY
AML®, ALL*®
no

no

no

no
AML*, ALLY
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no

no

CLL*, MDS*
CLL*, MM*
no

no
AML", B-cell
malignancies*
AML", B-cell
malignancies*

no

B cell lymphomas®’
no

no

CLLY, ALLY
no

no

no

T-cell leukemia*®
no

no

no

no

no

no

no

no

no

no

no

no
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mir-941-2 chr20:62,021,545-62,021,633 no

mir-941-3 chr20:62,021,657-62,021,745 no
mir-1914 chr20:62,043,262-62,043,341 no
mir-647 chr20:62,044,428-62,044,523 no
21g22.13 mir-802 chr21:36,014,883-36,014,976 no

For each cytogenetic band identified in this study are reported known miRNAs, the mapping position derived from the

UCSC database querying, and their implication in hematological malignancies according to literature data.
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Table 5. Response to treatment of 50 CML patients included in the study

Case Hydroxyurea Interferon-o Imatinib Nilotinib Dasatinib
#1 NE NE NR NR CCyR
#2 NE NE CCyR NE NE
#3 NA NA NA NA NA
#4 NA NA NA NA NA
#5 NE NE CCyR NE NE
#6 NE NE NR NE NE
#7 NA NA NA NA NA
#8 NA NA NA NA NA
#9 NA NA NA NA NA
#10 NA NA NA NA NA
#11 NE NR NE NE NE
#12 NR* NE NE NE NE
#13 NE NE CCyR NE NE
#14 NA NA NA NA NA
#15 NA NA NA NA NA
#16 NA NA NA NA NA
#17 NE NE CCyR NE NE
#18 NA NA NA NA NA
#19 NE NE CCyR NE NE
#20 NA NA NA NA NA
#21 NE NE CCyR NE NE
#22 NA NA NA NA NA
#23 NA NA NA NA NA
#24 NA NA NA NA NA
#25 NE NR NR NE CyCR
#26 NE NR CCYR NE NE
#27 NA NA NA NA NA
#28 NA NA NA NA NA
#29 NA NA NA NA NA
#30 NE NE CCyR NE NE
#31 NE NE NR NE NE
#32 NA NA NA NA NA
#33 NA NA NR NE NR
#34 NA NA NA NA NA
#35 NE NE CCyR NE NE
#36 NA NA NA NA NA
#37 NR* NE NE NE NE
#38 NE NR NE NE NE
#39 NA NA NA NA NA
#40 NE NR NE NE NE
#41 NE NR PCyR NE NE
#42 NA NA NA NA NA
#43 NE NR CCyR NE NE
#44 NA NA NA NA NA
#45 NA NA NA NA NA
#46 NE CHR NE NE NE
#47 NA NA NA NA NA

#48 NE NR NE NE NE



#49 NE NR NR NE CCyR
#50 NA NA NA NA NA

NE = Not Evaluable; NA = Not Available; NR= Non Responder; CCyR= Complete Cytogenetic Response; CHR =

Complete Hematologic Response; PcyR = Partial Cytogenetic Response; * = patient who died in the pre imatinib era, of

blast crisis.
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Additional files

Additional file 1

Format: Excel

Title: Oncogenes and TSGs regulated by the analyzed miRNAs.

Description: The number of the predicted target genes for each analyzed miRNA was reported
according to the miRGen database. Target genes with a role as oncogenes or TSGs were identified

by querying the NCBI database.

Additional file 2

Format: Excel

Title: Variant t(9;22) Breakpoints.

Description: The chromosomal bands involved in variant t(9;22) are shown according to our study
and recent large series of CML patients reported in literature. The number of total breaks observed
in each band is shown, together with the observed/expected (O/E) ratio. In bold are indicated
cytogenetic hotspots, O/E ratio being > 1. The symbol * represents hotspots previously reported
[26].
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