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ABSTRACT 

In recent years, tyrosine kinases (TKs) have been recognized as central players and 

regulators of cancer cell proliferation, apoptosis, and angiogenesis, and are therefore 

considered suitable potential targets for anti-cancer therapies. Several strategies for 

targeting TKs have been developed, the most successful being monoclonal antibodies 

and small molecule tyrosine kinase inhibitors. However, increasing evidence of acquired 

resistance to these drugs has been documented, and extensive preclinical studies are 

ongoing to try to understand the molecular mechanisms by which cancer cells are able 

to bypass their inhibitory activity.  

This review intends to present the most recently identified molecular mechanisms that 

mediate acquired resistance to tyrosine kinase inhibitors, identified through the use of in 

vitro models or the analysis of patient samples. The knowledge obtained from these 

studies will help to design better therapies that prevent and overcome resistance to 

treatment in cancer patients. 
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INTRODUCTION 

The most common type of pharmacological anticancer treatment has been, for decades, 

conventional chemotherapy. This type of treatment does not discriminate between 

rapidly dividing normal cells and tumor cells, thus leading to severe systemic side 

effects, while attempting to reduce the tumor mass. In the last decade, the use of novel 

molecular targeted therapies has raised interest of both patients and clinicians. These 

treatments inhibit specific molecules that have a role in tumor growth or progression, 

and that are frequently altered in tumors but not in normal cells; thus, being more 

specific toward tumor cells, they are accompanied by reduced systemic toxicity [1]. 

Nowadays, targeted therapies represent an integrative approach to cancer therapy that 

has already led to important clinical results [2-3].  

TYROSINE KINASES 

Tyrosine kinases have been identified as signaling molecules and prototypic 

oncogenes, and shown to play an important role in the development of many diseases, 

including cancer [4]. There is strong evidence that during tumor progression, the 

hyperactivation of tyrosine kinases leads to the continuous activation of downstream 

signaling cascades that block cellular apoptosis, promote cellular proliferation, and 

increase the nutrient/waste interchange by enhancing angiogenesis.  

Receptor Tyrosine Kinases (RTKs) are single pass transmembrane proteins that 

account for almost two thirds of the genes coding for tyrosine kinases. RTKs possess a 
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common functional kinase domain that is able to translate extracellular signals into 

active intracellular cues. Under physiological conditions, these receptors are activated 

only upon ligand binding [5]. Activation of the kinase is achieved by ligand-binding to the 

extracellular domain, which induces homo/hetero-dimerization of the receptors [6]. 

Activated receptors phosphorylate tyrosine residues outside their catalytic domain via 

cross-phosphorylation. This phosphorylation stabilizes the receptor conformation in an 

active state and creates phosphotyrosine docking sites for proteins which transduce 

signals within the cell [7-8].  

In cancer, this mechanism of ligand-dependent activation can be bypassed by (i) 

overexpression of the RTK, which increases the dynamics of receptor 

homo/heterodimerization in the absence of the ligand [9-11]; (ii) by activating mutations, 

which stabilize the receptor active conformation [12]; or (iii) by autocrine stimulation. 

These mechanisms lead to cell autonomous activation of RTKs that drive proliferative 

and anti-apoptotic signals, contributing to transformation [7].   

Non-Receptor Tyrosine Kinases (NRTKs), the second class of TKs, account for the 

remaining third of the approximately 90 known TKs and are critical signal transducers. 

Some examples include the well-known and well-characterized NRTKs Src, JAK, c-Abl 

and FAK. Interestingly, NRTKs were the first tyrosine kinases discovered [13-16]. Their 

involvement in cancer can occur through various mechanisms such as overexpression, 

mutation, and translocation; and therefore, many compounds have been developed 

attempting to inhibit their activity [17]. 
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Treatments with tyrosine kinase inhibitors (TKIs), in some cases, have given promising 

results.  However, most tumors treated with TKIs became resistant to treatment in a 

short time [18]. In other words, just as bacteria develop resistance to antibiotics, 

neoplastic cells can acquire new traits that render them more aggressive and able to 

survive in the presence of molecular inhibitors. 

Clinical experience has shown that only a percentage of patients respond to targeted 

therapies, even if their tumor expresses the altered target. This primary resistance to 

treatment is often due to constitutive activation of downstream signal transducers [19-

21]. Recently, many reports have evidenced that patients carrying activating mutations 

in effectors downstream of the targeted molecule account for the majority of the non-

responsive patients [22-23]. 

Given that many patients are starting to benefit from tyrosine kinase inhibitors, including 

monoclonal antibodies and small molecule inhibitors, clinicians and basic researchers 

are now trying to unveil and understand the mechanisms through which neoplastic cells 

loose their ability to respond to these drugs (also known as secondary resistance or 

acquired resistance). Luckily, it appears that the majority of the resistance models 

developed in vitro are predictive of what is observed in vivo and can thus help 

researchers in identifying and studying this crucial clinical problem.  

This review will attempt to provide an updated compendium of cellular modifications that 

contribute to acquired resistance to TKIs, highlighting the importance of preclinical 

studies of these drugs. 
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Targeting Tyrosine Kinases 

Many research groups, including ours, have shown that the inhibition of RTKs in 

neoplastic cells - by administration of monoclonal antibodies, interfering RNAs, and/or 

small kinase inhibitors (TKIs) - impairs cell proliferation and survival, inducing arrest of 

cell growth and apoptosis [24-28]. Based on these findings, many pharmaceutical 

companies have invested in designing or identifying new methods of inhibiting tyrosine 

kinases. 

Small molecule tyrosine kinase inhibitors. 

Pharmaceutical companies have focused their research on the development of small 

TKIs, some of which have received the approval of governmental drug administration 

agencies. Additional file 1 lists some TKIs currently approved or undergoing clinical 

trials. TKIs are small molecules that inhibit the enzymatic activity of the target protein. 

Most of these molecules can be categorized into four groups: (i) ATP-competitive 

inhibitors, which bind predominantly to the ATP-binding site of the kinase when this site 

is in the active conformation; (ii) inhibitors that recognize and bind to the non-active 

conformation of the ATP-binding site of the kinase, thus making activation energetically 

unfavorable; (iii) allosteric inhibitors, that bind outside of the ATP-binding site, modifying 

the tridimensional structure of the receptor and disrupting the interaction between the 

ATP and the kinase pocket; and (iv) covalent inhibitors, that bind irreversibly by 

covalently bonding to the ATP-binding site of the target kinase (reviewed in [29]). 
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While monoclonal antibody (mAb) therapy is particularly suited for extracellular 

(membrane-bound or secreted) targets, small-molecule kinase inhibitors are effective 

against both membrane-bound and intracellular targets. While both therapies have 

advantages and disadvantages when compared to each other, the major differences 

between monoclonal antibodies and small TKIs are the modality of administration, the 

bioavailability and half-life, and the mechanisms of resistance to the therapeutic agents 

[30-32].  (See comparison table 1). 

 

Monoclonal Antibodies 

Immunotherapy is based on the production of humanized monoclonal antibodies (mAbs) 

that bind with high specificity to secreted proteins or to the extracellular domain of 

membrane-bound proteins. The use of mAbs relies on the principle that most of the 

targeted molecules are expressed at higher levels on neoplastic cells, when compared 

to normal cells, where they play an important role in sustaining cancer progression. So 

far, there are several mechanisms described by which they exert their therapeutic 

effects; among them are: binding to the ligand or to the receptor, thus preventing ligand-

receptor interaction [33-34]; disrupting receptor internalization [35], promoting receptor 

internalization [36], shedding of the extracellular portion of the receptor [36-37], 

preventing receptor dimerization and activation [38], and induction of apoptosis [39-40].  

However, it is believed that each mAb acts through more than one mechanism. In 

addition, evidence has shown that activation of the immune response against the 
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targeted tumor cells, upon recognition of the bound antibody, can also account for their 

biological activity [41]. Table 2 lists monoclonal antibodies directed again tyrosine 

kinases currently used in preclinical and clinical studies. 

Monoclonal antibodies have been widely used in the clinic and have shown promising 

results, but unfortunately many patients relapse due to development of mechanisms of 

resistance. Information obtained from cellular models and relapsed patients has 

provided insights on how cells adapt to the treatment, by reducing the expression or 

modifying the structure of the target protein or activating alternative survival pathways 

[42].  

 

Mechanisms of resistance to TKIs 

Genetic modifications 

Clinical and in vitro evidence have shown that cells treated with TKIs tend to acquire 

genetic modifications to overcome the inhibitory effects of these agents. Common 

mechanisms of resistance include, but are not limited to: point mutations, deletions and 

amplifications of genomic areas. A schematic summary of the main molecular 

mechanisms of acquired resistance to small molecules is represented in Figure 1.  

 

Mutations. Mutations are common and occur frequently in rapidly dividing cancer cells. 

Point mutations are the most common mechanism of resistance to TKIs. The most 
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frequent types of mutations are those that decrease the affinity of the drug for the target 

kinase domain, while maintaining its catalytic activity. Other mutations alter the amino 

acids surrounding the binding site of the drug and decrease the availability of the target 

region towards the inhibitor, without interfering with ATP binding [29]. Finally, some 

mutations increase the affinity of the kinase for ATP, decreasing the effectiveness of the 

ATP-competitive inhibitors [43]. 

The strongest evidence comes from imatinib, a small tyrosine kinase inhibitor that was 

found to bind with high affinity to c-Abl kinase.  Imatinib is used to treat Chronic Myeloid 

Leukemia (CML) patients who express a constitutively active c-Abl tyrosine kinase, the 

BCR-ABL fusion protein. Imatinib abrogates the oncogenic function of BCR-ABL by 

binding the protein in its inactive state, thus preventing its autophosphorylation and, 

therefore, blocking the activation of downstream signal transducers. The use of imatinib 

has improved the life expectancy of CML patients, but major concerns have been raised 

for this and other TKIs by the rapid development of mechanisms of resistance. The 

majority of the CML patients in advanced stage (66%) and some in the chronic phase 

(5%) relapse after imatinib treatment, developing c-Abl dependent and independent 

mechanisms of resistance [44]. Approximately 30-50% of the relapsed patients acquire 

point mutations (around 90 distinct point mutations identified so far) that change the 

conformation of the c-Abl kinase, reducing or abrogating the ability of the compound to 

bind the c-Abl kinase domain [45-47]. This molecular mechanism of resistance has 

been supported also by structural studies which have shown that imatinib cannot 

efficiently interact with the ATP binding pocket in the mutated forms of BCR-ABL. When 
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reports started to show that mutations in the kinase domain of c-Abl were present in 

relapsed patients, and experimental work showed that the mutant kinase was no longer 

inhibited by imatinib, second generation inhibitors, such as dasatinib [48], nilotinib [48-

49], sunitinib [50], and bosutinib [51] were designed. These new molecules are able to 

recognize and bind BCR-ABL in different conformations, and are thus suitable for 

imatinib-relapsed patients. Dasatinib and nilotinib are able to interact with most of the 

mutated imatinib-resistant c-Abl forms, with the exception of the T315I mutant that 

changes the kinase and modifies several contact points between the drug and the 

kinase, while preserving the kinase activity [43, 52-53] . The only inhibitor so far that has 

been proven to inhibit this mutant is the multikinase inhibitor KW-2449 [54]. However, 

CML patients who used these second generation inhibitors developed resistance by 

acquiring new mutations in the kinase domain [55].   

Why do patients develop these mutations during treatment? There are reports that 

support the idea that the appearance of mutations in tumors after treatment with a 

specific TKI is the result of a process of selection of a pre-existing cell population. This 

theory implies that a small population of the tumor bulk a priori contains the mutation, 

which confers a primary resistance to these cells, therefore giving them a selective 

advantage. The bulk tumor mass is thus killed by the drug, allowing cells resistant to the 

TKI to grow. This theory is supported by the fact that some of these “resistance related 

mutations” can be found in a small percentage of tumor cells in patients that have not 

yet undergone targeted therapy [56-59]. On the other hand, other researchers believe 

that the high dependence of a cell on a specific oncogenic survival pathway forces 
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genomic instability, allowing the induction of mutations that confer resistance to the 

inhibitor. This genomic instability can induce mutations either in the drug target or in 

other signal transducers that activate alternative pathways able to sustain cell viability. 

This theory has been supported by groups who have induced resistance to TKIs in 

imatinib-sensible CML cell lines cloned by limiting dilution; they have found the 

appearance of BCR-ABL gene amplification and of point mutations in the kinase domain 

that were not present in the original cells  [60]. 

Further studies revealed that imatinib also binds with high affinity to the cKIT and 

PDGFR kinases, frequently activated in Gastrointestinal Stromal Tumors (GIST) [61]. 

GISTs are the first solid tumors in which a tyrosine kinase inhibitor was used as 

standard care. As these tumors often display mutations in the tyrosine kinase receptors 

cKIT and PDGFR, imatinib was used to inhibit their activity [62]. Like CML patients, 50-

70% of GIST patients treated with imatinib develop secondary mutations within the cKIT 

gene, conferring a reduced drug binding affinity but still retaining the kinase activity [63-

64]. To suppress the kinase activity of the resistant cKIT mutants, sunitinib was 

developed. As previously observed in patients treated with other inhibitors of second 

generation, imatinib-resistant GIST patients treated with sunitinib developed new 

mutations that made them again resistant to the new drug [65]. 

Gefitinib and erlotinib are small molecule TKIs targeting the Epidermal Growth Factor 

Receptor (EGFR) that have been used to treat tumors where this RTK is known to be 

altered. In particular, they have been used to treat non-small cell lung carcinomas 

(NSCLC)  where EGFR is frequently overexpressed or activated due to point mutations 
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[66]. According to a compendium of studies that include 1170 patients, more than 70% 

of NSCLCs with EGFR mutations respond to EGFR-TKIs, whereas only 10% of tumors 

without EGFR mutations do so. Unfortunately, upon treatment of these patients with 

gefitinib and erlotinib, two major mechanisms of resistance have been observed. The 

first is the appearance of a “resistance” point mutation in the kinase domain (T790M), 

observed in 50% of the gefitinib-resistant patients [67]. This mutation increases the 

affinity for ATP and weakens the affinity for ATP-competitive inhibitors [22, 68].  On the 

other hand, the second mechanism is the activation of an alternative oncogene able to 

compensate for the inhibited signaling pathways [69-70].  

Interestingly, in vitro models of acquired resistance to gefitinib, obtained by exposing 

gefitinib-sensitive cells to increasing concentrations of the drug, led to the appearance 

of the same mutations identified in patients. This has allowed scientists to study the 

mechanisms through which these mutations modulate sensitivity to the drug [71-75]. 

Lapatinib is another EGFR inhibitor, recently approved for treatment of breast cancer. 

This inhibitor has been designed to block receptor signaling by binding to the ATP-

binding pocket of EGFR and ERBB2 kinase domains, thus preventing phosphorylation 

and subsequent downstream signaling from these two receptors [76]. Using a randomly 

mutagenized ERBB2 library in vitro, Trowe et al. were able to identify 12 mutations in 

the kinase domain of ERBB2 that could confer resistance to the inhibitor [77].  

Moreover, this same work showed that a new generation inhibitor, EXEL-7647, is still 

active on all the mutants. 
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Similarly, activating mutations in the FLT3 RTK occur frequently in Acute Myelogenous 

Leukemia (AML). When AML patients were treated with PKC412, a staurosporin 

derivative able to inhibit FLT3’s kinase activity, patients rapidly developed point 

mutations in the kinase domain of FLT3 that rendered the kinase less accessible to the 

inhibitor [78]. These same mutations had been previously foreseen by a computational 

predictive analysis and confirmed by in vitro data when Cools et al. identified possible 

mutations in residues conferring a high level of resistance to small molecules [79]. 

Recently, another cellular model has predicted new point mutations that confer 

resistance to FLT3 inhibitors such as SU5614, PKC412, and sorafenib. As the different 

FLT3 kinase inhibitors generated distinct, non-overlapping mutational profiles, the 

authors propose that a combination of FLT3 inhibitors might be useful to prevent the 

appearance of FLT3 resistance mutations [80]. 

As previously mentioned, another clinically approved TKI currently in use is sorafenib. 

This small molecular multikinase inhibitor, primarily targets BRAF and can inhibit 

several other TKs such as PDGFR, VEGFR 1-2,  FLT3, and cKIT  [81]. This multi-target 

drug possesses anti-tumoral and anti-angiogenic properties due to its broad blocking 

activity. The use of sorafenib, just as with other small molecule inhibitors, has caused so 

far a variety of mutations in PDGFR [82], FLT3 [80], and BRAF [83] that confer 

resistance to the treatment.   

Gene Amplification. Gene amplification is a major mechanism of oncogenic 

activation [84]. Preclinical and clinical data have shown that the presence of either 

activating mutations in the kinase domain or gene amplification correlate with the best 
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response to TKI [84-85]. Unfortunately, the selective pressure of the drug can drive 

further amplification of the target gene, thus leading to additional overexpression of the 

encoded protein.  This idea originates from in vitro studies that have shown that highly 

amplified oncogenes are located in extrachromosomal acentromeric double minutes, 

and such cells undergoing “oncogenic stress” may undergo further gains due to 

advantageous unsymmetrical nuclear division [86]. These gains alter the stoichiometry 

of the drug-target interaction in favor of the target and result in its inefficient inhibition. 

This event has been observed in CML relapsed patients treated with imatinib, who 

displayed an increase in the BCR-ABL gene copy number [87]. In these patients, an 

increase in drug dosage is usually sufficient to restore responsiveness to the treatment. 

This same mechanism of resistance had been observed in an in vitro model where a 

CML cell line was treated for a long period of time with imatinib [42]. Likewise, the 

emergence of amplification of the target gene as a mechanism of resistance has been 

observed in two other cases where resistance cells amplified EGFR [88] or FTL3 [89] in 

response to inhibitors. 

Another way through which gene amplification can mediate resistance to treatment is 

via amplification of genes that encode for critical transducers driving signaling pathways 

that can compensate for the signals lost due to target inhibition [69]. A notable example 

is the amplification of the MET gene, encoding for the receptor tyrosine kinase for 

hepatocyte growth factor, in a percentage of gefitinib-relapsed patients affected by 

NSCLC. These results perfectly correlated with those obtained in in vitro studies after 

treating sensitive NSCLC cell lines with progressively increasing doses of gefitinib or 
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other EGFR inhibitors [57-58, 70, 90-91]. In these experiments, MET overexpression led 

to its constitutive activation by a ligand-independent mechanism, which later resulted in 

advantageous interactions with other EGFR family members, mainly ERBB3, and 

activation of downstream signals. Inhibition of MET, in this context, restored sensitivity 

to EGFR inhibitors [70].  

Genomic Deletions. Other genomic alterations frequently observed upon TKI 

treatment are deletions. Khorashad and collaborators performed a genome-wide study 

comparing DNA samples from CML patients prior to imatinib treatment and after 

relapse. CGH analyses for all patients revealed that 28% of the copy number alterations 

were genomic deletions. Among the genes that were most frequently altered were those 

involved in the control of the MAPK signaling pathway [92].  

Among the genes that are frequently deleted in human cancers are those encoding 

microRNAs (miRNAs). MiRNAs have emerged as a novel class of regulatory genes 

involved in human cancer [93-94]. Lacking the ability to encode a protein, these single-

stranded miRNAs bind to imperfectly complementary sequences of encoding mRNAs, 

causing these mRNA sequences to be silenced or degraded, resulting in reduced levels 

of the protein encoded by the mRNA. Many reports have highlighted the relevance of 

these non-coding RNA’s in human cancer, where they are frequently altered, more often 

as consequence of their deletion [95]. Various groups have reported cases where the 

deletion of miRNA regions has led to overexpression of the targeted RTKs, due to lack 

of down-regulation [95-97]. In this context, Seike and collaborators recently correlated 

high EGFR activation with high expression of mir-21 both in NSCLC patient samples 
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and cell lines. They report that inhibition of EGFR by the small molecule AG1478 

reduced the levels of this miRNA, concluding that the activation status of the receptor 

modulates the expression of this anti-apoptotic miRNA [98]. As it considered a growing 

field of interest, various groups have reported that miRNA expression can mediate 

resistance to different types of chemotherapy [99-102] (reviewed in [103]), and it is very 

likely that quite soon miRNAs will also be found to play a role in mediating resistance to 

TKIs. 

 

Modifications of protein expression 

Cells seem to possess a broad repertoire of adaptive reactions that enable them to 

survive in many adverse conditions. One of the adaptive traits is the overexpression or 

the repression of genes that sustain cell viability [104]. Mahon et al. recently 

demonstrated that nilotinib-resistant CML cell lines were able to upregulate the 

expression of BCR-ABL, thus overcoming the inhibitory threshold of nilotinib [105]. 

Although this and other similar works lack evidence that the overexpression of the target 

protein is not due to gene amplification (also known mechanism of resistance to BCR-

ABL TKI), this can be considered as a new mechanism of resistance.  

This last response does not involve genetic alterations, but simply changes in gene 

expression, due to microenvironmental stress or to epigenetic modifications. It is known 

that the use of TKIs can lead to reduced blood flow, which in turn increases the 

incidence of hypoxic areas [106]. Moreover, hypoxia is known to upregulate HIF-1a, a 
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protein that can promote the expression of many genes including the RTK MET, which 

is capable of sustaining the MAPK and PI3K survival pathways [107].  

Likewise, epigenetic changes can also contribute to TKI resistance. For example, Noro 

et al. reported an in vitro model where lung cancer cells resistant to gefitinib displayed 

hypermethylation of the PTEN gene promoter; exogenous re-expression of this enzyme 

restores senstivity to the EGFR inhibitor [108].  

  

Activation of alternative pathways 

Some cells can replace the lack of signal due to target inhibition by activating alternative 

pathways. The EGFR family of receptors has been shown to develop mechanisms of 

resistance by modifying the expression of several downstream effectors. For example, 

Pandya and collaborators developed a cellular model where colorectal carcinoma 

HCT116 cells, which depend on ERBB2 activity, lose their sensitivity to lapatinib. The 

major mechanism of resistance observed was the increased expression of MCL-1, and 

the decreased expression and activity of BAX and BAK [109], altogether leading to 

decreased apoptotic responses. Another proposed mechanism of resistance was 

reported by Xia et al. who showed that lapatinib-resistant breast cancer cells and 

lapatinib-treated patients displayed an increased level of the Estrogen Receptor and the 

transcription factor FoxoA3 [110].  Another example was recently reported by Turke et 

al. where EGFR-dependent cells stimulated with MET’s ligand, HGF, were resistant 

both in vivo and in vitro, and such effect could be blocked by the use of MET inhibitors 
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[57]. In a similar manner, McDermott et al. reported that MET-dependent NSCLC cells 

activate EGFR as a mechanism of resistance to PF2341066 (an irreversible MET 

kinase inhibitor) using an increasing dose resistant cellular model [111]. 

Another mechanism of resistance that was reported in NSCLC patients and in cell lines 

resistant to gefitinib treatment is the cross-talk between the EGFR/ERBB2 receptors 

and the IGF-1R receptor [112-114]. This mechanism of resistance relies on the fact that 

cells utilize IGF-1R to activate survival pathways that are able to promote growth [115]. 

One report shows that a prostate cancer cell line which became resistant to gefitinib 

displayed an increase of IGFII mRNA and IGF-1R protein phosphorylation [112-113]. 

Moreover, it was also published that a gefitinib-resistant lung squamous carcinoma cell 

line lost the production of IGFBP3-4 when compared to the parental cells; re-expression 

of these proteins restored the sensitivity to gefitinib’s cytostatic effect [116].  

The activation of an alternative kinase is known to overcome the inhibitory effects of 

small molecules. For example, GIST cells resistant to imatinib exhibited increased 

levels of the AXL receptor, that could in turn activate the AKT pathway and thus 

overcome c-KIT inhibition [97, 117]. Two different groups have recently shown that in a 

cellular model of CML, TKI-resistant cells display activation of the Src kinase LYN; 

inhibition of this kinase by the use of dasatinib restores sensitivity to imatinib or nilotinib 

[105, 118]. 

In a similar manner, the human myelomonoblastic cell line MV4-11, generated to be 

resistant to PKC412, displayed an up-regulation of anti-apoptotic genes and down-
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regulation of proapoptotic signals as well as genes that are involved in normal and 

malignant hematopoiesis [89].  

Recently, Huang et al. reported that tumor xenografts resistant to sunitinib secreted 

higher amounts of IL-8 (proangiogenic factor known to be induced by several key 

regulators of cell survival and hypoxia) which at the same time positively correlated with 

a higher tumor vessel density [119-120]. 

Another commonly observed mechanism of resistance to TKI is the overexpression of 

survivin a member of the inhibitor of apoptosis family, encoded by the BIRC5 gene [110, 

121]. This cancer therapy candidate gene is overexpressed in a large variety of human 

tumors [122-125] and its expression is absent in terminally differentiated [126-127]. 

Survivin is known to inhibit caspase activation, and therefore, leading to negatively 

regulate apoptosis or programmed cell death, and it has been correlated with both 

accelerated relapse and chemotherapy resistance [128].  Xia et al. have demonstrated 

that overexpression of surviving can mediate resistance to lapatinib; such finding was 

observed by generating lapatinib-resistant breast cancer cells in vitro and correlating 

clinical observations [110]. 

 

Mechanisms of Resistance related to drug influx/efflux  

There are many mechanisms implicated in the decrease of the effective intracellular 

concentration of a drug, leading to lack of response to treatment. Among the most 

important resistance mechanisms are: increased drug influx/efflux and drug plasma 
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sequestration. Other factors that can contribute to decreased drug delivery to tumors 

include irregular blood flow, defects in the structure and permeability of tumor 

vasculature and drug diffusion in the interstitium. 

The occurrence of multidrug resistance (MDR) is a very frequent cause of failure of 

chemotherapeutic treatment in cancer patients. MDR proteins are transmembrane 

pumps responsible for the active efflux of a broad range of structurally unrelated 

molecules. This efflux can occur despite considerable concentration gradients at the 

expense of ATP depletion, resulting in decreased intracellular drug accumulation [129]. 

It is conceivable that TKIs may inhibit the function of ATP-binding cassette (ABC) 

transporters by recognizing their ATP-binding sites. In fact, some of these small 

molecules such as cediranib, lapatinib, and sunitinib have proven to be effective in 

reversing MDR associated to chemotherapeutics, by directly inhibiting the transport 

function of some ABC members. This ability renders them useful options for cancer 

combinational therapy [130-131]. The initial success of molecularly targeted therapies 

raised hope that newly developed agents would evade the general mechanisms of 

resistance that have reduced the efficacy of traditional anticancer drugs. However, ABC 

transporters related to MDR have emerged as key factors that regulate the intracellular 

concentrations of many small-molecule inhibitors. Drug transporters may be 

overexpressed in cancer cells, reducing intracellular drug concentrations, and may allow 

the evolution of point mutations that confer stronger drug resistance [132]. 

Mahone and collaborators demonstrated that imatinib-resistant cell lines overexpressed 

the P-glycoprotein (P-gp) efflux pump [133].  This concept was reinforced when imatinib 
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sensitivity was restored when P-gp pumps were blocked by different inhibitors [134-

135], or silenced using RNAi [136-137]. All this data indicates that P-gp is a likely 

candidate contributing to imatinib resistance, and some in vitro data suggests that this 

may also be true for resistance to nilotinib [105]. Dasatinib and sunitinib have been 

shown to be a substrate of both efflux proteins, ABCB1 and ABCG2 [138-139]. ABCG2 

has also been shown to bind gefitinib with high affinity, causing an active extrusion of 

the inhibitor and thus preventing its biological activity [140]. 

In addition, multiple reports have provided evidence that deregulation of the organic 

cation transporter hOCT1 can impede the influx of imatinib. Using hOCT inhibitors on 

different imatinib-sensitive CML cells caused a reduced uptake of imatinib [141]. This 

finding was further supported by clinical data showing that patients who display a 

minimal response to imatinib also express a significantly lower amount of hOCT [142-

143]. Therefore, intracellular drug levels depend in part on the differential expression of 

influx and efflux transporters, which are determinants of TKI resistance. 

Another method by which tumors bypass the inhibitory effects of TKI is by the 

sequestration of such drugs by plasma proteins, such as the plasma protein-1 acid 

glycoprotein (AGP). It has been shown in vitro and in vivo that AGP binds to imatinib, 

and this binding decreases imatinib’s ability to inhibit c-ABL in a dose-dependent 

manner [144], findings supported by clinical data [145-146].  
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Mechanisms of resistance to monoclonal antibodies 

Although monoclonal antibodies have given very good results in the clinic, the 

emergence of resistance is also frequently observed upon treatment with these agents. 

Several mechanisms of resistance have been observed in preclinical and clinical 

studies, mostly with antibodies that have already undergone FDA approval. In the case 

of monotherapy, preexistence of mutations in the MAPK or PI3K signaling pathways is 

one of the major causes of primary or intrinsic resistance. In 2009, the American Society 

of Clinical Oncology suggested that metastatic colorectal cancer (CRC) patients who 

displayed an alteration in codon 12 or 13 of KRAS should not be considered for 

monoclonal therapy [147]. This decision was based on multiple studies that have shown 

that activating mutations in KRAS [148-150], PIK3CA [19], BRAF [151] and loss of 

expression of PTEN [152-156] correlated negatively with cetuximab or panitumumab 

response (reviewed in [157]).  

Patients undergoing monotherapy are also prone to develop secondary or acquired 

resistance to such treatment.  So far, no mAb therapy has given rise to any point 

mutation in the target receptor or rearrangements in genomic regions. The mechanisms 

described up to now typically involve variations in protein expression. At least five 

modifications of this type have been shown to contribute to resistance to mAbs: 

(i) Overexpression and aberrant phosphorylation of alternative RTKs attempting to 

overcome the inhibition of the targeted protein. In 2008, Wheeler et al. generated 

NSCLC and HNSCC cetuximab-resistant cell lines, such resistance was mediated by 

the increased expression of ERBB2, ERBB3, and MET which can interact with other 
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EGFR family members contributing to their activation [35]. In a similar way, Lu et al. and 

Shattuck et al. have shown that cells can overcome trastuzumab inhibition by the 

activation of IGF-1R and MET, respectively [114, 158-161].   

(ii) The second known protein modification is expression of receptor variants. Sok and 

collaborators demonstrated that a mutant variant of EGFR (EGFRvIII), which lacks the 

ligand binding domain, is expressed in more than 42% of HNSCC. In their experiments, 

overexpression of EGFRvIII in HNSCC cells decreased in the inhibitory response to 

cetuximab [162].  

(iii) The third protein modification involves the targeted protein; in this type of resistance, 

cells display an increased expression of the target receptor. Reports have shown that 

NSCLC cell lines resistant to cetuximab display an increase in EGFR protein levels due 

to a defective deregulation in the degradation pathways [35, 163].   

(iv) Activation of alternative pathways is another mechanism of resistance. It has been 

observed that cells resistant to either cetuximab or trastuzumab can develop a 

dependency on new signaling pathways either by triggering the same biological effects 

by interaction with other EGFR family members [35, 164], or by association with other 

kinases such as Src [165]. Valabrega et al. reported that TGFα (an EGFR ligand) 

overexpression can contribute to resistance [166].  It is interesting to note that the 

overexpression of ligands is not a rare event, since patients and cell lines resistant to 

bevacizumab (a VEGF blocking antibody) cause tumor cells to secrete additional 
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angiogenic factors (FGF [167], PGF [168], members of the notch ligand/receptor family 

[169]) to compensate for the lack of VEGF signaling [170-171]. 

Lastly, (v) the lack of interaction between the target and the mAb due to steric hindrance 

caused by the formation of complexes with other cell surface proteins, such as in the 

case of resistance to trastuzumab. It is known that the expression of MUC4, a 

membrane-associated mucin that contributes to the masking of membrane proteins, 

decreases the amount of trastuzumab that can bind to ERBB2 [172]  When MUC4 was 

silenced in trastuzumab resistant cells, cells were once again sensitive to the mAb 

[173].  

 

Conclusions 

New clinical and laboratory studies have suggested that multi-targeting approaches 

against neoplastic cells could help to increase patient survival and, possibly, reduce the 

emergence of cells resistant to single-target inhibitors [174]. This increased activity will 

have to be balanced by the expected increased toxicity due to the association of the 

drugs. Moreover, combination mAbs and multi-target small molecules could be also a 

very promising therapeutic approach [175-176] . 

Accumulating experimental and clinical evidences have supported the idea that targeted 

therapy should be reassessed. In particular, we should keep in mind that tumors are the 

result of multiple genetic lesions. Clinicians and researchers should not underestimate 
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the capacity of tumors to easily adapt to new stress conditions, therefore inducing or 

selecting those cells that can better survive in the presence of an inhibitor.  
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Figure 

Figure 1. Schematic summary of the main molecular mechanisms of acquired 

resistance to TKIs. 
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Tables 

Table 1. Major differences between monoclonal antibodies and small molecule tyrosine 

kinase inhibitors. 

 mAb Small molecule TKI 

Administration Intravenous Oral or parenteral 

Target availability Must be extracellular Extra/intra-cellular 

Cost US$ 4,200/month 
(trastuzumab) 

US $1,800/month 
(gefitinib) 

Size ~150,000 daltons ~400 daltons 

Diffusion 
Near vessels, surrounding 
tumor area; inefficient 
delivery 

Easy to diffuse, 
translocate though plasma 
membranes, may reach 
brain tissues 

Toxicity Low toxicity Mid-high toxicity 

Half-Life Days-weeks <72h 

Mechanism of Action Disrupt  ligand-receptor or 
receptor-receptor 
(homo/hetrodimerization) 

interactions, receptor 
downregulation, induction 
of apoptosis 

Bind to target kinase(s), 
inhibit phosphorylation and 
downstream signaling 
pathways. Induce 
apoptosis. 

Approval success rate 18-24% 5% 

Mechanisms of 
resistance 

Protein Modifications: 

Switch of surface 
receptors. 

Shedding of the 
extracellular portion of the 
receptor. 

Expression of truncated 
receptors. 

Modification of receptor 

Genetic modifications: 

Point Mutations (Activating 
mutations).  

Amplifications (Target 
gene). 

Deletions. 

Protein Modifications: 

Overexpression of the 
target protein. 
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structure. 

Activation of downstream 
signaling pathways. 

 

target protein. 

Activation of alternative 
pathways. 

Overexpression of 
Multidrug resistance 
genes. 
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Table 2. List of Monoclonal antibodies approved by FDA or undergoing clinical trials.  

Name of mAb 
Commercial 

Name 
Approval 

Year 
Target 
Kinase 

Mechanism of 
resistance 

Bevacizumab 
(Genentech/Roche)  

Avastin 2004 VEGFR 
4 

Cetuximab (ImClone 
and Bristol-Myers 
Squibb) 

Erbitux 2004 EGFR 
1,2,3,4 

Panitumumab 
(Amgen) 

Vectibix 2006 EGFR 
 

Trastuzumab 
(Genentech) 

Herceptin 1998 ERBB2  
2,4,5 

IMC-A12 
Cixutumumab  

(ImClone) 

 Phase II IGF1-R 

 

AVE1642  

(Sanofi-Aventis) 
 Phase I IGF1-R 

 

Pertuzumab 

(Genentech) 
Omnitarg Phase III ERBB2  

 

MetMAb  

(Genentech) 
 Phase I/II MET  

 

IMC-1121B 
Ramucirumab 

(ImClone) 

 Phase III VEGFR-2 

 

IMC-18F1 

(ImClone) 
 Phase I VEGFR 

 

AMG-102 
Rilotumumab 
(Amgen) 

 Phase II MET 
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Antibodies common name is followed by ( ) that denotes producer. Mechanisms of 

resistance: 1) overexpression of alternative RTK, 2) expression of receptor variants, 3) 

overexpression of target protein, 4) developed new signaling pathways, 5) structure 

modification 

 

 

Additional File 

Additional File 1. List of some small molecule TKIs approved by the FDA or currently 

undergoing clinical trials.  
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