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Abstract 

Introduction: Various agents used in breast cancer chemotherapy provoke 

DNA double-strand breaks (DSBs). DSB repair competence determines the 

sensitivity of cells to these agents whereby aberrations in the repair machinery 

leads to apoptosis. Proteins required for this pathway can be detected as 

nuclear foci at sites of DNA damage when the pathway is intact. Here we 

investigate whether focus formation of repair proteins can predict 

chemosensitivity of breast cancer. 

Methods: Core needle biopsy specimens were obtained from sixty cases of 

primary breast cancer before and 18-24 hours after the first cycle of neoadjuvant 

epirubicin plus cyclophosphamide (EC) treatment. Nuclear focus formation of 

DNA damage repair proteins was immunohistochemically analyzed and 

compared with tumor response to chemotherapy. 

Results: EC treatment induced nuclear foci of γH2AX, conjugated ubiquitin, and 

Rad51 in a substantial amount of cases. In contrast, BRCA1 foci were observed 

before treatment in the majority of the cases and only decreased after EC in 

thirteen cases. The presence of BRCA1-, γH2AX-, or Rad51-foci before 

treatment or the presence of Rad51-foci after treatment was inversely correlated 

with tumor response to chemotherapy. DNA damage response (DDR) 

competence was further evaluated by considering all four repair indicators 

together. A high DDR score significantly correlated with low tumor response to 

EC and EC + docetaxel whereas other clinicopathological factors analyzed did 

not. 
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Conclusions: High performing DDR focus formation resulted in tumor 

resistance to DNA damage-inducing chemotherapy. Our results suggested an 

importance of evaluation of DDR competence to predict breast cancer 

chemosensitivity, and merits further studying into its usefulness in exclusion of 

non-responder patients.
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Introduction 

Recent advances in chemotherapy have significantly improved the prognosis of 

breast cancer patients. However, prediction of tumor sensitivity to chemotherapy 

has not reached a high level of confidence, whereas determining sensitivity to 

hormone therapy or trastuzumab is relatively more established. Estrogen and 

progesterone receptors (ER and PR) and HER2/ErbB2 are practical benchmarks 

to exclude non-responding patients, and tailoring treatment based on gene 

status significantly optimizes the response rate of hormone therapy and 

trastuzumab, respectively. Prediction of chemosensitivity with equivalent 

accuracy is currently anticipated to further improve breast cancer prognosis. 

 Anthracycline-based regimen, such as epirubicin plus 

cyclophosphamide (EC), and taxanes represent the major chemotherapeutic 

agents used in the breast cancer field[1, 2]. Of these, anthracycline-based 

chemotherapy induces DNA double-strand breaks (DSBs)[3, 4], the most 

cytotoxic DNA lesion, that leads cells into apoptosis especially when relevant 

repair pathways (represented by homologous recombination (HR) repair) are 

perturbed[5]. It is important to note that DNA damage repair competence varies 

among individual breast tumors and closely correlates with chemosensitivity. For 

example, secondary mutations of BRCA1 or 2 (essential factors in the HR 

pathway) caused by chemotherapy using cisplatin or poly(ADP-ribose) 

polymerase (PARP) inhibitor in BRCA1/2-mutated cancers restore the wild-type 

reading frame and, therefore, the tumor acquires resistance to these drugs [6-8]. 

These facts indicate that chemosensitivity of BRCA-associated cancers could be 

strongly affected by DNA damage repair capability. Based on this evidence it has 
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been suggested that HR competence could be a potential biomarker for 

chemosensitivity [9]. Rad51, a protein that plays a direct role in HR, especially 

reflects the HR-competence of cells. Therefore, knowing its status is likely 

valuable when assessing HR-competence in tumor cells in order to instruct 

therapeutic decisions [9].  

The HR pathway for DSB repair is executed by sequential recruitment of 

repair proteins to chromatin around DNA lesions. Accumulation of the proteins is 

regulated by complex mechanisms that utilize phosphorylation and ubiquitination 

modifications mediated by kinases, including ATM, and at least three ubiquitin 

E3 ligases, RNF8, RNF168, Rad18, and BRCA1 [10-17]. The 

Mre11-Rad50-Nbs1 complex first recognizes DSBs and recruits ATM. ATM then 

phosphorylates the histone variant H2AX (γH2AX) [18, 19] that triggers 

accumulation of the downstream E3 ligases RNF8 [11-13, 20] and RNF168 [14, 

15]. Lysine 63 (K63)–linked polyubiquitin chains built at the sites of DNA damage 

by these E3 ligases next recruits the BRCA1-Abraxas-RAP80 complex through 

the RAP80 component, a protein that contains UIM (ubiquitin interacting motif) 

domains [21-23]. BRCA1 is then essential to recruit repair effector proteins, 

including Rad51, that perform HR through sister chromatid exchange [24, 25]. 

Depletion of any one of these proteins results in HR deficiency accompanied by 

loss of Rad51 focus formation, causing cells to become hypersensitive to 

DSB-inducing agents. 

In this study we attempt to clarify the value of HR-competence for 

prediction of breast cancer chemosensitivity.  One contention is that nuclear 

focus formation of repair proteins in baseline breast cancer tissues is a response 
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to spontaneous DNA damage during cell proliferation and, in turn, may represent 

a marker of HR-competence of cells to exogenous DNA damage. Therefore, it 

may predict tumor response to DNA damage-inducing chemotherapy such as 

EC. Also, the focus formation after chemotherapy could provide us additional 

information regarding the DNA damage response capacity. To verify in vivo 

whether focus formation of repair proteins actually occurs in response to DNA 

damage-inducing chemotherapy and whether it correlates with tumor fates after 

chemotherapy, we analyzed foci in core needle biopsy specimens from breast 

cancer before and after neoadjuvant EC treatment.  

 

Materials and methods 

 Patients and tumors       

Sixty patients with primary breast cancer (2 cm or larger) who 

consecutively underwent neoadjuvant chemotherapy with epirubicin plus 

cyclophosphamide (EC) followed by docetaxel (DOC) at the Division of Breast 

and Endocrine Surgery, St. Marianna University School of Medicine, Japan, 

were enrolled in the present study from August 2005 to July 2007. Tumor 

specimens were obtained by core needle biopsy prior to starting therapy and 18 

to 24 hours after the first cycle of EC treatment. Informed consent for the 

additional core needle biopsy and experimental use of tumor samples was 

obtained for all patients in accordance with an approved Institutional Review 

Board application (registration number 946).  

The chemotherapy regimen consisted of four 21-day cycles of EC (E: 80 

mg/m2 on day 1, C: 600 mg/m2 on day 1) followed by four 21-day cycles of DOC 
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(75 mg/m2 on day 1). Tumor size was evaluated by three-dimensional images 

obtained by helical CT scan with a teleradiologic image workstation 

(ZIOSTATION®, Ziosoft Inc., Tokyo, Japan) at baseline, 14 to 21 days after the 

last cycle of EC, and 21 days after the last cycle of DOC treatment. The effect of 

chemotherapy on the tumor was assessed as the three-dimensional volume 

reduction rate or tumor response rate. The tumor response was evaluated either 

by Response Evaluation Criteria in Solid Tumors (RECIST) [26] or by the 

three-dimensional volume evaluation defined as: complete response (CR, 

disappearance of the disease), partial response (PR, reduction of tumor volume 

of ≥65%), stable disease (SD, volume reduction <65% or enlargement ≤73%), or 

progressive disease (PD, volume enlargement ≥73%) that are equivalent to CR 

(disappearance), PR (reduction of ≥30%), SD (reduction <30% or enlargement 

≤20%), or PD (enlargement ≥20%) in unidimensional RECIST criteria, 

respectively (reviewed in [27]). We also analyzed responses with a 50% border 

between PR and SD (instead of 65%) to evaluate more resistant cases.  

 

Immunohistochemical analysis 

Immunohistochemical analysis was performed by the DAKO EnVision 

system (DAKO, Copenhagen, Denmark) with modifications. Formalin-fixed, 

paraffin-embedded specimens were cut and heated in a water bath (95°C, 40 

min) in Target Retrieval Solution (pH 9.0, Dako, Carpinteria, CA) for detection of 

BRCA-1 or in 10 mM sodium citrate buffer (pH 6.0) for γH2AX and Rad51. No 

pre-treatment was necessary to detect conjugated ubiquitin. After quenching of 

endogenous peroxidase, the sections were incubated overnight at 4°C with 
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primary antibody at the appropriate dilution (Additional file 1), washed with PBS, 

and incubated with horseradish peroxidase-labeled polymer conjugated 

secondary antibody (EnVision+ System, Dako) for 30 min at room temperature. 

Color development was achieved by 3, 3’-diaminobenzidine tetrahydrochloride. 

Effectiveness and specificity of each antibody for the detection of DNA 

damage-induced nuclear foci were verified with cultured cells treated with 

ionizing radiation (IR) or epirubicin. Immunofluorescent study was previously 

described [28, 29]. The nuclear foci were further analyzed with the protocol used 

in the tissue stain. The intrinsic subtype[30] was approximated by receptor status 

determined by standard immunohistochemical and FISH analyses: luminal A: 

ER+ and/or PR+ and HER2-; luminal B: ER+ and/or PR+ and HER2+; HER2: 

ER- and PR- and HER2+; Triple negative: ER- and PR- and HER2-. Tumors that 

were immunochistochemically scored as 3+, or scored 2+ with FISH-positive, 

were regarded as positive for HER2 status. Cytokeratin (CK) 5/6 expression was 

also examined to evaluate the basal-like character.  

 

Immunohistochemical scoring 

Taking into consideration that all immunohistochemical markers used in the 

study localize to sites of DNA damage in normal HR pathway, we only counted 

cells displaying nuclear focus formation and disregarded cytoplasmic or diffuse 

nuclear staining. We scored the nuclear foci staining as follows: Foci score 0: no 

positive cells, 1: less than 10% positive cells, 2: 10% or greater, but less than 

80% positive cells, 3: 80% or greater positive cells. Two observers (H. A. and H. 

K.) were blinded to the clinical information to avoid observer subjectivity when 
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evaluating the immunohistochemical staining. To correlate staining with tumor 

response, we divided the cases into negative and positive samples to simplify 

the statistical analyses. The positive cases are a total of the categories with a 

foci score of 1, 2 and 3. To assess the capacity of the DNA damage response 

(DDR) using a more comprehensive approach, we configured the DDR score by 

counting the total number of positive factors present in baseline foci of BRCA1, 

γH2AX and Rad51, and EC-induced foci of Rad51, per case. 

 

Statistical analysis 

The variables measured in the study were first investigated for 

association by the Chi-Square (χ2) contingency table analysis. For rank 

correlation, Spearman’s method was performed to determine the correlation 

between the foci score of two repair proteins and to determine the correlation 

between tumor response rate and focus formation of each repair protein or DDR 

score. For parametric analyses of tumor volume reduction, Student’s unpaired 

t-test and the Tukey-Kramer method were performed for two-factor comparisons 

and multiple comparisons, respectively. For evaluation of significance of DDR 

score and other clinicopathological factors in correlation with mean tumor 

volume reduction or tumor response rate, variant analysis (univariate) or logistic 

regression analyses (univariate and multivaliate), respectively, were performed. 

All analyses were carried out using Statview 5 statistical software (SAS Institute 

Inc, Cary, NC). Statistical significance was declared for p values less than 0.05.  

 

Results 
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Clinical and pathologic features 

 Sixty patients with primary breast cancer were included in the present 

series. All tumors were diagnosed as invasive ductal carcinoma. Patient clinical 

characteristics are given in Table 1. All triple negative tumors were positive for 

CK5/6 (therefore described as basal-like in table 1) while three cases of Luminal 

A, one case of Luminal B and three cases of HER2 type were positive for CK5/6. 

Three patients have one first-degree relative with a history of breast cancer and 

two patients have one second-degree relative with a history of breast or ovarian 

cancer. All patients completed an EC+DOC regimen. Rad51 and γH2AX stains 

were not performed on tumor specimens before EC in two patients because of 

insufficient tumor sample after reserving stocks for clinical use. Tumor size 

evaluation by CT after EC+DOC was not performed for one patient because of 

the patient’s condition. All but one patient received breast surgery after 

EC+DOC.  

 

Nuclear foci staining of DNA damage repair proteins 

 To assess the competence of the DSB repair pathway, we 

immunohistochemically analyzed γH2AX, conjugated-ubiquitin, BRCA1, and 

Rad51 in nuclear foci based on the idea that these candidates may represent a 

typical course of the DSB repair cascade[31]. Of these, γH2AX is the most 

upstream element, sequentially followed in the cascade by conjugated-ubiquitin, 

BRCA1, and Rad51. Rad51 is the most downstream of these four proteins and is 

directly involved in HR. However it should be mentioned that DNA repair failure 

due to genes at the same level of or downstream of RAD51, such as 
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RAD51AP1[32] or translesion DNA polymerases[33, 34] unlikely cause loss of 

foci formation of these proteins. In addition to untreated, baseline breast cancer 

tissues, we analyzed the tissues 18 to 24 hours after the first cycle of EC 

treatment to obtain further information for the assessment of DNA repair capacity. 

The antibodies used in this study are commonly used and well-characterized in 

general. In addition we tested background staining and confirmed the specific 

detection of nuclear foci at DSBs caused by IR or epirubucin treatment (Figure 

1). 

 The immunohistochemical analyses revealed that in all but two cases, 

the foci score of at least one of the repair proteins was altered in response to EC 

treatment. Representative data for immunohistochemical findings of the nuclear 

focus formation of the repair proteins before and after the first cycle of EC are 

shown in Figure 2 with panels summarizing the foci scores of the cases. Prior to 

EC treatment, samples were stained to determine baseline staining of foci. The 

foci were positive for γH2AX (20/58 cases), BRCA1 (51/60 cases), or Rad51 

(11/58 cases) whereas no cases exhibited foci staining for conjugated-ubiquitin 

(0/60 cases). In response to EC treatment, the number of foci staining positive 

for γH2AX (44/58 cases), conjugated-ubiquitin (26/60 cases), and Rad51 (31/58 

cases) increased, whereas foci staining for BRCA1 either increased (9/60 cases), 

remained unchanged (38/60 cases) or decreased (13/60 cases). The reason 

why BRCA1 foci staining decreased after treatment in some cases is not clear at 

present but it could be implicated in the presence of BRCA1 foci in normal 

S-phase that colocalizes with PCNA at DNA replication fork[35]. The foci score of 

BRCA1 after EC (EC-induced foci score) significantly correlated with that of 
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Rad51 (p=0.0017, Table 2), likely reflecting the requirement of BRCA1 for Rad51 

recruitment at the site of DNA damage. However, no other correlations between 

repair proteins were observed, and no clear pattern combinations of repair 

proteins emerged. 

 

Association of focus formation of each repair protein with tumor response 

to chemotherapy 

 To elucidate the possible association between DDR competence and 

tumor response to chemotherapy, we correlated the presence of individual repair 

proteins in foci with tumor volume before and after chemotherapy.  Tumor 

volume was measured prior to chemotherapy to establish the baseline volume. 

The mean volume reduction of tumors after EC and after EC+DOC was 59.7 ± 

25.8 and 76.0 ± 20.7 percent of baseline tumor volume, respectively. We 

analyzed the presence of repair proteins in foci before (baseline foci) and after 

EC-treatment (EC-induced foci), sorted them into positive and negative foci 

groups for each individual repair protein, and then correlated each group with 

tumor volume (Additional file 2). There was a significant difference in tumor 

volume after EC between BRCA1-positive and -negative baseline foci groups 

(82.1 ± 17.8% vs 55.7 ± 25.1%, p=.0039)(Additional file 2a). We then performed 

the same analysis after EC+DOC treatment. In addition to BRCA1 (93.7 ± 6.6% 

vs 72.8 ± 20.7% p=.0044), significant differences in tumor volume were 

observed between positive and negative γH2AX (78.4 ± 17.4% vs 65.6 ± 26.8% 

p=.0429) and Rad51 baseline foci groups (78.1 ± 18.9% vs 63.6 ± 24.4% 

p=.0351)(Additional file 2b).  
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We next tested the correlation between scored foci groups and the 

tumor response rate. The tumor response rate was evaluated with RECIST or 

three-dimensional volume reduction using either 65% or 50% of the PR/SD 

border (as described in the Materials and Methods). Tumor responses to EC and 

EC+DOC according to focus formation status are shown in Additional file 3. 

Contingency table analyses demonstrate significant differences in the EC-tumor 

response rate between BRCA1-positive and -negative baseline foci groups and 

between Rad51-positive and -negative EC-induced foci groups for all three 

criteria of the response rate (ZIO 65%, ZIO 50%, RECIST). There continued to 

be a significant difference in tumor response rate after EC+DOC treatment 

between Rad51-positive and -negative EC-induced foci groups for all three 

criteria. In addition, when evaluated with a three-dimensional volume reduction 

using 50% of the PR/SD border, significant differences in the EC+DOC tumor 

response rate were observed between Rad51-positive and negative baseline 

foci groups. 

To specify the correlation of these focus formation groups with tumor 

response rates, we further analyzed the data with Spearman’s rank correlation 

method. When evaluated with three-dimensional volume reduction using 50% of 

the PR/SD border, Spearman’s analysis showed that presence of 

BRCA1-positive baseline foci associated with poor EC-tumor response. 

(p=.0067; Additional file 3). Spearman’s analysis also demonstrated that the 

presence of Rad51-positive baseline foci (p=.0078) or EC-induced foci (p=.0042; 

Additional file 3) associated with poor EC+DOC-tumor response. 
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Association of DDR score with tumor reduction by chemotherapy 

The analysis correlating focus formation of BRCA1, γH2AX, and Rad51 

prior to treatment and of Rad51 foci after EC treatment with the mean tumor 

volume reduction or tumor response rate (Additional files 2 and 3) uncovers a 

significant inverse correlation with tumor response for each of the four conditions. 

These data support the supposition that higher DDR competency produces 

tumors resistant to chemotherapy. To correlate overall DDR competency with 

tumor reduction, we devised a simple measurement to assess DDR competency. 

Each patient case was analyzed for the presence of all four above-listed 

conditions and was assigned a DDR score of 0-4 based on the number of 

conditions present. This DDR score was then correlated with mean tumor 

volume reductions. Number of cases in each DDR score is shown in Table 3. As 

shown in Figure 3, both the mean tumor volume reductions after EC (28.4 ± 

28.1%) and after EC+DOC (49.9 ± 22.0%) for DDR score 4 (all four conditions 

present) were the lowest among all the scores. There were significant 

differences between score 4 and either score 0 or 2 for the mean tumor volume 

reductions after EC (Figure 3a) and between score 4 and either score 0, 1 or 2 

for the mean tumor volume reductions after EC+DOC (Figure 3b), as judged by 

the Tukey-Kramer multiple comparisons study setting p<.05 as significance 

threshold. In addition, Spearman’s analysis showed that a high DDR score was 

associated with poor tumor response rate after EC+DOC (p=.0031) when 

evaluated with three-dimensional volume reduction using 50% of the PR/SD 

border (Table 3). A high DDR score also tended to be associated with poor tumor 

response rate after EC (p=.0639) (Table 3). 
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The correlation between DDR score and the tumor response prompted 

us to examine whether it has a significant impact among other 

clinicopathological factors including age, cancer stage, tumor size, nodal 

metastatic status and subtypes. None of these factors correlated with DDR score 

(data not shown). The variant analysis for mean tumor volume reduction after EC 

revealed that only DDR score (p=.0069), but no other factors correlated with the 

mean tumor volume reduction (Table 4). The variant analysis for mean tumor 

volume reduction after EC+DOC also demonstrated DDR score (p=.0035) as the 

most significant correlation factor, followed by nodal status (p=.0201) and tumor 

size (p=.0538)(Table 4). In addition, univariate logistic regression analysis 

showed that a high (3 and 4) DDR score was most significantly associated with 

poor tumor response after EC+DOC (p=.0095) when evaluated with volume 

reduction using 50% of the PR/SD border, followed by tumor size (p=.0260), 

cancer stage (p=.0465), and subtype (p=.0659) (Table 5). We then examined 

multivariate analysis with tumor size, nodal status, subtype and DDR score, the 

factors that showed probable association with tumor response rate in the 

univariate analysis. Cancer stage was omitted because it was correlated with 

tumor size. Importantly the result indicated that only DDR score significantly 

associated with tumor response rate (p=.0402) independent of other factors 

analyzed (Table 6). 

 

Discussion 

In the present study using human tumor specimens we show for the first 

time that DNA repair-competence may predict breast cancer sensitivity to DNA 
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damage-inducing chemotherapy. We selected γH2AX, conjugated-ubiquitin, 

BRCA1, and Rad51, proteins in the DSB repair cascade, to assess DNA repair 

competence because accumulated evidence demonstrates that inactivation of 

genes in the DSB repair pathway results in cellular sensitivity to DNA 

damage-inducing chemotherapy[16, 29, 31, 36-38]. In our study, these repair 

proteins dramatically responded to EC treatment. The conjugated-ubiquitin 

response was especially dramatic as approximately half of the cases analyzed 

formed conjugated-ubiquitin foci, compared to undetectable foci formation prior 

to treatment. This suggests that ubiquitination occurs in vivo during the DNA 

damage response in an early stage after chemotherapy. However, in spite of the 

dramatic response, we did not find any significant correlation between 

conjugated-ubiquitin foci formation and tumor response. The reason is currently 

unknown. One possibility is that this could be attributed to the fact that 

ubiquitination is also involved in DNA damage response pathways other than for 

DSBs. 

We could not find certain trends of the combinations of responding repair 

proteins. Several reasons could account for this observation. First, the 

metabolism and pharmacokinetics of the agents could vary per patient. The ideal 

time to obtain the in vivo sample was, therefore, difficult to determine. We must 

say that the experimental design employed in this study was not very robust in 

this way. In cultured cells γH2AX accumulates at sites of DNA damage just 

minutes after the damage occurs, while BRCA1 and Rad51 foci appear 30 

minutes to several hours afterward[11, 35, 39, 40]. In this study we harvested 

samples 18-24 hours after EC treatment because the agents were still expected 
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to be present in patients and we also considered the patient’s convenience. 

However, the ideal timing remains to be determined if biopsy after chemotherapy 

is required. The second reason for the diversity of the DDR response could be 

attributed to the diversity of aberrations of the genes responsible for DSB repair 

in each breast cancer. Theoretically, defects in the recruitment of upstream 

repair proteins could result in loss of downstream proteins at sites of DNA 

damage, and this has been shown to be the case in many molecular biological 

studies using cultured cells [10-15, 21-23]. Furthermore, it was also shown that 

Rad51 nuclear expression is absent in BRCA2 mutation-associated tumors [41]. 

The positive correlation found between EC-induced BRCA1 and Rad51 foci in 

this study (Table 2) may also support this interpretation. In contrast, it was 

reported that overexpression of Rad51 restored Rad51 focus formation and 

rescued the sensitivity of BRCA1-deficient cells to X-rays and cisplatin [42]. 

Importantly, up-regulation of Rad51 was a common feature of BRCA1-deficient 

breast tumors [42]. These data suggest that the mechanism of DSB repair 

response in vivo is not simple and that assessment of DSB repair aberrations in 

each patient case is, therefore, unreasonable at present.  

In an attempt to address this problem in our current study, we assessed 

the comprehensive capacity of DSB repair by incorporating multiple candidate 

factors into one DDR score. We found that foci of BRCA1, γH2AX and Rad51 

prior to treatment and EC-induced foci of Rad51 correlated with tumor response 

when compared either with the mean tumor volume reduction or the tumor 

response rate. Upon incorporating these four factors into one DDR score, a 

significant correlation was observed with mean tumor volume reduction after EC, 
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whereas no other factors correlated with the mean tumor volume reduction 

(Table 4, and Figure 3a). Although it was not statistically significant the similar 

correlation was also observed between DDR score and the tumor response rate 

(Table 3). These correlations became more significant after EC+DOC treatment 

(Table 3, 4, 5, and Figure 3b) and the DDR score was independent predictive 

factor of other factors including tumor subtype when evaluated with volume 

reduction using 50% of the PR/SD border (Table 6). Recent studies suggested 

that luminal tumors have low response rate to neoadjuvant chemotherapy, while 

basal-like and HER2+ tumors have higher response rates. For example it has 

been reported that clinical response rate (CR and PR) to anthracyclin-based 

chemotherapy of luminal A was 39% whereas that of basal-like, which has been 

implicated with BRCA1 dysfunction[43, 44], was 85%[45]. The response rates to 

EC treatment of luminal A (15/37 cases, 40.5%) and basal-like (4/6 cases, 

66.7%) subtypes in the current study were not very different from the previous 

report. However, we could not find any correlation between subtype and DDR 

sore while DDR score independently predicted the chemosensitivity. The result 

may reflect the fact that luminal A tumors also include DNA damage-sensitive 

tumors with defective HR pathway that can be counted by the DDR score. 

Supporting this it has been shown that tumors caused by BRCA2 deficiency 

mainly become luminal A tumor[44, 46, 47].  

The reason why the correlation between the DDR score and tumor 

response after EC+DOC treatment became more significant than that after EC is 

not clear at present. Because DOC does not induce DNA double-strand breaks, 

the observed effect is not likely due to the sensitivity to DNA damage in those 
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tumors. DOC might be more toxic for the cells with gross genomic aberration 

caused by the pretreatment with EC under the condition with less HR competent. 

Alternatively it is possible that time length after EC treatment enhanced the 

difference of the outcome. 

Interestingly, DDR score group 4 consisted of cases with poor tumor 

responses to chemotherapy when evaluated for both mean tumor volume 

reduction (Figure 3) and tumor response rate (Table 3). This result may lead to 

the possibility of using DDR status in the clinic to predict and exclude 

non-responders to EC treatment. It is noteworthy to point out that the HR repair 

cascade for DSB contains many essential proteins other than that tested in this 

study. By including select subsets of proteins for analysis, it may be possible to 

identify non-responders in order to avoid unnecessary chemotherapy. Ideally in 

such cases, the levels of baseline foci present prior to treatment would provide 

enough information to determine appropriate treatment, preventing the need for 

additional core needle biopsy after chemotherapy.  

 

Conclusions 

In conclusion, our results suggest the importance of evaluating DDR 

competence to predict breast cancer chemosensitivity and warrant further 

investigation into its effectiveness as a way to exclude non-responding patients. 
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Figure legends 

Figure 1. Immunohistochemistry controls and antibody specificity. (A) 

Immunohistochemical staining with control IgG for tumors after the first cycle of 

EC treatment (upper panel). Lower panel shows Rad51 staining for 

morphologically diagnosed non-cancerous breast tissues (left upper part) and 

tumor (right lower part) after the first cycle of EC treatment. Although 

non-cancerous breast cells also expressed nuclear foci formation the number 

and intensity was significantly lower than that in tumor cells. (b and c) DNA 

damage induced nuclear foci formations detected by antibodies used in the 

study. HeLa cells were either untreated (-), treated with 5 Gy IR (IR) or 0.2 g/ml 

epirubicin (Epi), incubated for 3 hours and fixed. Cells were then subjected either 

to immunofluorescent analyses with the indicated primary antibodies and FITC- 

(green) or Rhodamine- (red) conjugated secondary antibodies (b), or to the 

same protocol as that used in the tissue stain (c). For immunofluorescent 

analyses the nucleus was counterstained with DAPI.  
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Figure 2. Nuclear focus formation in response to chemotherapy. Tumor 

specimens were obtained by core needle biopsy before and 18 to 24 hours after 

the first cycle of EC treatment. Immunohistochemical findings from 

representative cases for γH2AX, conjugated-ubiquitin (Ub), BRCA1, and Rad51 

are shown. Graphs at right demonstrate changes in nuclear foci score after EC 

treatment in all cases analyzed. The red, blue, and black lines indicate cases 

with increased, decreased, and unchanged scores, respectively. The thickness 

of the lines proportionally reflects the number of cases. The thinnest line (γH2AX 

score 3 to 3) and the thickest line (Ub, score 0 to 0) represent one and thirty-four 

cases, respectively. n: number of cases analyzed. 

 

Figure 3. Mean tumor volume reductions after EC (a) or EC+DOC (b) 

according to DDR score. Error bars represent standard deviation. Significance 

was analyzed by Tukey-Kramer test setting p<.05 as significance threshold. 
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Tables 

Table 1. Patient characteristics 

Characteristic Factor  No. of patients Characteristic Factor No. of patients 

Age at treatment start  Cancer stage  

Median  50 I 0 

Range  34-68 II 53 

Lymph node metastasis  III 5 

Negative 36 IV 2 

Positive  24 Intrinsic Subtype*  

Tumor stage  Luminal A 37 

T1 0 Luminal B 6 

T2 54 HER2 11 

T3 6 Basal-like 6 

T4 0 Total 60 

* intrinsic subtypes were approximated by immunohistochemical receptor 

status.  
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Table 2. Correlation between EC-induced foci of Rad51 and BRCA1 

 BRCA1 

 0 1 2 3 Total 

Rad51      

0 7 10 2 0 19 

1 3 24 9 2 38 

2 0 0 2 0 2 

Total 10 34 13 2 59 

     P =.0017 

P value is from the Spearman's rank correlation test 
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Table 3. Correlation between DDR score and tumor response rate (ZIO 

50%) 

 DDR score 

  0 1 2 3 4 Total 

After EC       

CR 1 0 1 0 0 2 

PR 1 12 14 9 2 38 

SD 0 3 8 3 4 18 

Total 2 15 23 12 6 58 

      P =.0639 

After EC+DOC       

CR 1 1 3 1 0 6 

PR 1 13 19 9 2 44 

SD 0 0 1 2 4 7 

Total 2 14 23 12 6 57 

      P =.0031 

P values are from the Spearman's rank correlation test 
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Table 4. Univariate analysis of variance for mean tumor volume reduction 

  n Mean tumor volume 

reduction (%) ± SD 

P 

After EC     

 Age    

 -50 30 64.1 ± 25.9 .1710 

 51- 29 54.9 ± 25.4  

 Cancer stage    

 II 53 61.5 ± 25.1 .0962 

 III 5 55.7 ± 29.1  

 IV 2 21.9 ± 6.4  

 Tumor stage    

 T2 54 60.8 ± 25.3 .3059 

 T3 6 21.9 ± 6.4  

 Nodal status    

 N- 24 62.7 ± 24.9 .4557 

 N+ 36 57.6 ± 26.6  

 Subtype    

 Luminal A 37 58.8 ± 21.3 .2923 

 Luminal B 6 72.9 ± 9.4  

 HER2 11 50.4 ± 36.4  

 Basal-like 6 69.4 ± 37.0  

 DDR score    

 0 2 94.6 ± 7.6 .0069 

 1 15 57.3 ± 19.4  

 2 23 62.8 ± 22.9  

 3 12 61.1 ± 26.6  

 4 6 28.4 ± 28.1  

After EC-DOC     

 Age    

 -50 30 80.6 ± 23.9 .0804 

 51- 29 71.2 ± 15.7  

 Cancer stage    

 II 52 77.9 ± 19.8 .1230 

 III 5 64.3 ± 25.7  
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 IV 2 54.7 ± 17.6  

 Tumor stage    

 T2 53 77.7 ± 19.7 .0538 

 T3 6 60.6 ± 24.7  

 Nodal status    

 N- 23 83.7 ± 14.3 .0201 

 N+ 36 71.0 ± 22.7  

 Subtype    

 Luminal A 36 77.9 ± 16.1 .0789 

 Luminal B 6 86.0 ± 9.5  

 HER2 11 62.4 ± 30.5  

 Basal-like 6 79.7 ± 24.8  

 DDR score    

 0 2 99.6 ± 0.6 .0035 

 1 14 77.2 ± 13.2  

 2 23 81.0 ± 14.7  

 3 12 70.7 ± 27.5  

 4 6 49.9 ± 22.0  

Abbreviation: DDR, DNA Damage Response 
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Table 5. Univariate logistic regression analysis of factors affecting tumor 

response rate (ZIO 50%) 

  ODDS Ratio (95%CI) P 

After EC+DOC     

 Age    

 <51 1.000   

 51≤ 0.800 (0.192-3.333) .7592 

 Cancer stage    

 II 1.000   

 III, IV 5.750 (1.028-32.174) .0465 

 Tumor stage    

 T2 1.000   

 T3 7.833 (1.279-47.964) .0260 

 Nodal status    

 N- 1.000   

 N+ 6.286 (0.730-54.110) .0942 

 Subtype    

 Luminal A, B 1.000   

 HER2, Basal-like 3.958 (0.913-17.154) .0659 

 DDR score    

 0, 1, 2 1.000   

 3, 4 9.423 (1.729-51.359) .0095 

Abbreviation: CI, confidence interval; DDR, DNA Damage Response 

 

Table 6. Multivariate logistic regression analysis of factors affecting tumor 

response rate (ZIO 50%) 

  ODDS Ratio (95%CI) P 

After EC+DOC     

 Tumor stage    

 T2 1.000   

 T3 2.246 (0.290-17.420) .4388 

 Nodal status    

 N- 1.000   
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 N+ 3.651 (0.346-38.506) .2813 

 Subtype    

 Luminal A, B 1.000   

 HER2, Basal-like 2.484 (0.464-13.287) .2874 

 DDR score    

 0, 1, 2 1.000   

 3, 4 6.694 (1.088-41.182) .0402 

Abbreviation: CI, confidence interval; DDR, DNA Damage Response 
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Title: Table S1 

Description: Antibodies used in the present immunohistochemical study. 
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Title: Figure S1. 

Description: Mean tumor volume reduction after neoadjuvant chemotherapy 

according to the nuclear foci status for DNA repair proteins and a figure legend. 
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Title: Table S2. 

Description: Tumor response rate according to the nuclear foci status for DNA 

repair proteins. 

 





Figure 2Figure 2





Additional files provided with this submission:

Additional file 1: sup1.pdf, 34K
http://breast-cancer-research.com/imedia/1980542613364826/supp1.pdf
Additional file 2: sup2.pdf, 122K
http://breast-cancer-research.com/imedia/1483528007363562/supp2.pdf
Additional file 3: sup3.pdf, 54K
http://breast-cancer-research.com/imedia/2087857252364826/supp3.pdf


	Start of article
	Figure 1
	Figure 2
	Figure 3
	Additional files
	Start of article
	Figure 1
	Figure 2
	Figure 3
	Additional files

