Organ-, inflammation- and cancer specific transcriptional fingerprints of pancreatic and hepatic stellate cells
By: Mert Erkan , Nadine Weis , Zheng Pan , Christian Schwager , Tamar Samkharadze , Xiaohua Jiang , Ute Wirkner , Nathalia A. Giese , Wilhelm Ansorge , Jurgen Debus , Peter E. Huber , Helmut Friess , Amir Abdollahi and Jorg Kleeff

Molecular Cancer 2010, 9:88 doi:10.1186/1476-4598-9-88
Published: 23 April 2010

Abstract (Provisional)

Background

Tissue fibrosis is an integral component of chronic inflammatory (liver and pancreas) diseases and pancreatic cancer. Activated pancreatic- (PSC) and hepatic- (HSC) stellate cells play a key role in fibrogenesis. To identify organ- and disease-specific stellate cell transcriptional fingerprints, we employed genome-wide transcriptional analysis of primary human PSC and HSC isolated from patients with chronic inflammation or cancer.

Methods

Stellate cells were isolated from patients with chronic pancreatitis (n=6), pancreatic ductal adenocarcinoma (n=5), liver cirrhosis (n=5) and liver metastasis of pancreatic ductal adenocarcinoma (n=6). Genome-wide transcriptional profiles of stellate cells were generated using our 51K human cDNA microarray platform. The identified organ- and disease specific genes were validated by quantitative RT-PCR, immunoblot, ELISA, immunocytochemistry and immunohistochemistry.

Results

Expression profiling identified 160 organ- and 89 disease- specific stellate cell transcripts. Collagen type 11a1 (COL11A1) was discovered as a novel PSC specific marker with up to 65-fold higher expression levels in PSC compared to HSC (p<0.0001). Likewise, the expression of the cytokine CCL2 and the cell adhesion molecule VCAM1 were confined to HSC. PBX1 expression levels tend to be increased in inflammatory- vs. tumor- stellate cells. Intriguingly, tyrosine kinase JAK2 and a member of cell contact-mediated communication CELSR3 were found to be selectively up-regulated in tumor stellate cells.

Conclusions

We identified and validated HSC and PSC specific markers. Moreover, novel target genes of tumor- and inflammation associated stellate cells were discovered. Our data may be instrumental in developing new tailored organ- or disease-specific targeted therapies and stellate cell biomarkers.

The complete article is available as a provisional PDF. The fully formatted PDF and HTML versions are in production.






* Albert Einstein College of Medicine has been
awarded Acceditation with Commendation by
the ACCME

Copyright 2025 InterMDnet | Privacy Policy | Disclaimer | System Requirements