Show channels:
Found 15113 articles
 
The prostate gland represents a multifaceted system in which prostate epithelia and stroma have distinct physiological roles. To understand the interaction between stroma and glandular epithelia, it is essential to delineate the gene expression profiles of these two tissue types in prostate cancer. Most studies have compared tumor and normal samples by performing global expression analysis using a mixture of cell populations. This report presents the first study of prostate tumor tissue that examines patterns of differential expression between specific cell types using laser capture microdissection (LCM). »
04/28/10
 
Lymphovascular invasion (LVI) and lymph node metastasis are conventional pathological factors associated with an unfavorable prognosis of urothelial carcinoma of the upper urinary tract (UC-UUT), but little is known about the molecular mechanisms underlying LVI and nodal metastasis in this disease. Rac1 small GTPase (Rac1) is essential for tumor metastasis. Activated GTP-bound Rac1 (Rac1 activity) plays a key role in activating downstream effectors known as Pak (21-activated kinase), which are key regulators of cytoskeletal remolding, cell motility, and cell proliferation, and thus have a role in both carcinogenesis and tumor invasion. »
04/28/10
 
Treatment options for patients with lower risk non-del(5q) myelodysplastic syndromes (MDS) who fail erythroid stimulating agents are restricted to one of the hypomethylating drugs with an expected response rate of ~50%. Ezatiostat HCl, an agent with the potential for producing multi-lineage responses in this population is currently in clinical investigation phase. »
04/23/10
 
Prognostic markers, such as NPM1, Flt3-ITD, and cytogenetic abnormalities have made it possible to formulate aggressive treatment plans for unfavorable acute myeloid leukemia (AML). However, the long-term survival of AML with unfavorable factors remains unsatisfactory. »
04/23/10
 
Autophagy is characterized by the sequestration of cytoplasm and organelles into multimembrane vesicles and subsequent degradation by the cell's lysosomal system. It is linked to many physiological functions in human cells including stress response, protein degradation, organelle turnover, caspase-independent cell death and tumor suppression. Malignant transformation is frequently associated with deregulation of autophagy and several tumor suppressors can modulate autophagic processes. The tumor suppressor p53 can induce autophagy after metabolic or genotoxic stress through transcriptionally-dependent and -independent mechanisms. In this study we expand on the former mechanism by functionally characterizing a p53 family target gene, ISG20L1 under conditions of genotoxic stress. »
04/29/10
 
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The molecular mechanisms underlying hepatocarcinogenesis are still poorly understood. Genetically modified mice are powerful tools to further investigate the mechanisms of HCC development. However, this approach is limited due to the lack of non-invasive detection methods in small rodents. The aim of this study was to establish a protocol for the non-invasive analysis of hepatocarcinogenesis in transgenic mice using a clinical 1.5 Tesla Magnetic Resonance Imaging scanner. »
04/29/10
 
Diminished expression or activity of prostate apoptosis response protein 4 (Par-4) has been demonstrated in a number of cancers, although reports on Par-4 expression during colon cancer progression are lacking. An understanding of the molecular events in conjunction with the genetic networks affected by Par-4 is warranted. »
04/30/10
 
Myc is a well known driver of lymphomagenesis, and Myc-activating chromosomal translocation is the recognized hallmark of Burkitt lymphoma, an aggressive form of non-Hodgkin's lymphoma. We developed a model that mimics this translocation event by inserting a mouse Myc cDNA gene into the immunoglobulin heavy chain locus, just upstream of the intronic Emu enhancer. These mice, designated iMycEmu, readily develop B-cell lymphoma. To study the mechanism of Myc-induced lymphoma, we analyzed signaling pathways in lymphoblastic B-cell lymphomas (LBLs) from iMycEmu mice, and an LBL-derived cell line, iMycEmu-1. »
04/30/10
 
Translational control mediated by non-coding microRNAs (miRNAs) plays a key role in the mechanism of cellular resistance to anti-cancer drug treatment. Dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS, TS) are two of the most important targets for antifolate- and fluoropyrimidine-based chemotherapies in the past 50 years. In this study, we investigated the roles of miR-215 in the chemoresistance to DHFR inhibitor methotrexate (MTX) and TS inhibitor Tomudex (TDX). »
04/30/10
 
Cytoplasmic stress granules (SGs) are specialized storage sites of untranslated mRNAs whose formation occurs under different stress conditions and is often associated with cell survival. SGs-inducing stresses include radiations, hypoxia, viral infections, and chemical inhibitors of specific translation initiation factors. The FDA-approved drug bortezomib (Velcade(R)) is a peptide boronate inhibitor of the 26S proteasome that is very efficient for the treatment of myelomas and other hematological tumors. Solid tumors are largely refractory to bortezomib. In the present study, we investigated the formation of SGs following bortezomib treatment. »
04/29/10

* Albert Einstein College of Medicine has been
awarded Acceditation with Commendation by
the ACCME

Copyright 2025 InterMDnet | Privacy Policy | Disclaimer | System Requirements